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Data Statistics
• Different DBMS collect different statistics


• Example statistics (collected in Postgres):


• Number of distinct values in column


• Ratio of SQL null values in column


• Most frequent values with associated frequency


• Histograms approximating column data distribution


• ...
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Data Statistics in PG

• Force DBMS to create statistics via VACUUM ANALYZE 

• Generated statistics are exploited by query optimizer


• Inexplicably bad performance? Might miss statistics


• Can access column statistics via pg_stats view


• E.g., tablename, attname, n_distinct, null_frac, ...
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Estimating Selectivity
• Selectivity: probability that row satisfies predicate


• Estimate via constraints and data statistics


• E.g., Selectivity(Column=Value) = 1/NrValues 

• E.g., NrRows(Column=Value) ≤ 1 if Key Column 

• Selectivity(A⋀B) = Selectivity(A) * Selectivity(B)
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Which  
Simplifying Assumptions 

Do We Make?
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Estimating Selectivity
• Selectivity: probability that row satisfies predicate


• Estimate via constraints and data statistics


• E.g., Selectivity(Column=Value) = 1/NrValues 

• E.g., NrRows(Column=Value) ≤ 1 if Key Column 

• Selectivity(A⋀B) = Selectivity(A) * Selectivity(B)
Assumes Independent Predicates

Assumes Uniform Data
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Estimating Cardinality
• Assume that cardinality of single tables is given


• DBMS store that information for each base table


• Calculate cardinality product for tables in from clause


• = Number of result rows if predicates are always true


• Now multiply with selectivity estimates for all predicates


• Estimate how many rows pass predicate filter
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Estimating Page Size
• Cost functions are based on number of data pages


• Calculate average byte size per record for each result


• Calculate how many records fit on one data page


• Pages cannot store fractional records → round down


• Divide number of rows by number of records per page


• Result is size, measured in pages
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Estimating Cost
• Generally only count cost of page reads and writes


• Sum up cost over all operators in the plan


• For each operator consider the following:


• For each input, how often is it read from disk?


• For each output, is it written to disk? Is it final result?


• Does the operator read/write intermediate results?
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Cost Estimation 
Example
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Input Query and Database

SELECT Count(*)  
FROM Customers C JOIN Orders O USING (cid)  
  JOIN Products P USING (pid)  
WHERE C.location = 'Ithaca' AND  
  P.name = 'Book Ithaca is Gorges'

Customers(Cid, name, location) 
Orders(Cid, Pid, date) 
Products(Pid, name, price)
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Query Plan Candidate

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)
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Selectivity Estimation
Element Property Value

Customers Cardinality 10,000

Orders Cardinality 100,000

Products Cardinality 5,000

Customers.Location # Values 100

Products.Name # Values 2,500

Foreign Key: Orders.Cid to Customers.Cid 
Foreign Key: Orders.Pid to Products.Pid

Predicate Selectivity
𝛔C.Location='Ithaca' ?

C.Cid=O.Cid ?
𝛔P.name='... Gorges' ?

O.Pid=P.Pid ?
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Selectivity Estimation
Element Property Value

Customers Cardinality 10,000

Orders Cardinality 100,000

Products Cardinality 5,000

Customers.Location # Values 100

Products.Name # Values 2,500

Foreign Key: Orders.Cid to Customers.Cid 
Foreign Key: Orders.Pid to Products.Pid

Predicate Selectivity
𝛔C.Location='Ithaca' 1/100

C.Cid=O.Cid 1/10,000
𝛔P.name='... Gorges' 1/2,500

O.Pid=P.Pid 1/5,000
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Cardinality Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000



Slides by Immanuel Trummer, Cornell University

Cardinality Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows
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Cardinality Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows
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Cardinality Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows 2 Rows
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Cardinality Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows 2 Rows

2/5 Rows
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Is That Realistic ... ?
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Size Estimation 
(Preparation)

Table Columns Size/Entry Rows/Page

Customers Cid, name, location ? ?

Orders Cid, Pid, date ? ?

Products Pid, name, price ? ?

C⨝O Cid, name, location, pid, 
date ? ?

C⨝O⨝P Cid, C.name, location, pid, 
date, P.name, price ? ?

Assume page size of 8,000 bytes, 
4 bytes for ints and dates, 10 bytes for strings
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Size Estimation 
(Preparation)

Table Columns Size/Entry Rows/Page

Customers Cid, name, location 24 ?

Orders Cid, Pid, date ? ?

Products Pid, name, price ? ?

C⨝O Cid, name, location, pid, 
date ? ?

C⨝O⨝P Cid, C.name, location, pid, 
date, P.name, price ? ?

Assume page size of 8,000 bytes, 
4 bytes for ints and dates, 10 bytes for strings
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Size Estimation 
(Preparation)

Table Columns Size/Entry Rows/Page

Customers Cid, name, location 24 333

Orders Cid, Pid, date ? ?

Products Pid, name, price ? ?

C⨝O Cid, name, location, pid, 
date ? ?

C⨝O⨝P Cid, C.name, location, pid, 
date, P.name, price ? ?

Assume page size of 8,000 bytes, 
4 bytes for ints and dates, 10 bytes for strings
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Size Estimation 
(Preparation)

Table Columns Size/Entry Rows/Page

Customers Cid, name, location 24 333

Orders Cid, Pid, date 12 666

Products Pid, name, price 18 444

C⨝O Cid, name, location, pid, 
date 32 250

C⨝O⨝P Cid, C.name, location, pid, 
date, P.name, price 46 173

Assume page size of 8,000 bytes, 
4 bytes for ints and dates, 10 bytes for strings
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Size Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows 2 Rows

2/5 Rows

31 Pages

1 Page 151 Pages 12 Pages

1 Page4 Pages

1 Page
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Cost Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows 2 Rows

2/5 Rows

31 Pages

1 Page 151 Pages 12 Pages

1 Page4 Pages

1 Page

(Count one page per bucket,  

one per entry)

(Enough memory 

for single-pass 
partitioning)
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Cost Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows 2 Rows

2/5 Rows

31 Pages

1 Page 151 Pages 12 Pages

1 Page4 Pages

1 Page

31

(Count one page per bucket,  

one per entry)

(Enough memory 

for single-pass 
partitioning)
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Cost Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows 2 Rows

2/5 Rows

31 Pages

1 Page 151 Pages 12 Pages

1 Page4 Pages

1 Page

31

1104

(Count one page per bucket,  

one per entry)

(Enough memory 

for single-pass 
partitioning)
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Cost Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows 2 Rows

2/5 Rows

31 Pages

1 Page 151 Pages 12 Pages

1 Page4 Pages

1 Page

31

1104

(Count one page per bucket,  

one per entry)

13

(Enough memory 

for single-pass 
partitioning)
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Cost Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
𝛔P.name='... Gorges'

Scan Filter  
(Output  

Materialized)

(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows 2 Rows

2/5 Rows

31 Pages

1 Page 151 Pages 12 Pages

1 Page4 Pages

1 Page

31

1104

(Count one page per bucket,  

one per entry)

13

(Enough memory 

for single-pass 
partitioning)15
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Cost Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'
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at
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Fl

ow

Aggregate 
(On the Fly)

Hash Join 
(Output 

Pipelined)

Scan Filter  
(Output  

Pipelined)

Index NL 
(Output  

Materialized)
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Scan Filter  
(Output  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(Hash Index on  

Cid Available)10,000 Rows

100,000 Rows 5,000 Rows
1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows 2 Rows

2/5 Rows

31 Pages

1 Page 151 Pages 12 Pages

1 Page4 Pages

1 Page

31

1104

(Count one page per bucket,  

one per entry)

13

(Enough memory 

for single-pass 
partitioning)15

0



Slides by Immanuel Trummer, Cornell University

Cost Estimation

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'
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(Output 

Pipelined)
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(Output  

Pipelined)

Index NL 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(Hash Index on  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1/100

1/10,000 1/2,500

1/5,000

100 Rows

1,000 Rows 2 Rows

2/5 Rows

31 Pages

1 Page 151 Pages 12 Pages

1 Page4 Pages

1 Page

31

1104

(Count one page per bucket,  

one per entry)
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(Enough memory 

for single-pass 
partitioning)15
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Query Plan Space

• Decide order of operations and implementation


• Apply heuristic restrictions


• H1: Apply predicates/projections early


• H2: Avoid predicate-less joins


• H3: Focus on left-deep plans
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H1: Early Predicates  
and Projections

• Processing more data is more expensive


• Want to reduce data size as quickly as possible


• Can do that by adding predicates (discarding rows)


• Can also do that by adding projections (discard columns)
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Can We Improve This?

⨝O.Pid=P.Pid

Count(*)

⨝C.Cid=O.Cid

Products (P)Orders (O)𝛔C.Location='Ithaca'

Customers (C)

D
at

a 
Fl

ow

𝛔P.name='... Gorges'
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H2: Avoid Joins  
without Predicates

• Join result size: product of input cardinality * selectivity


• Selectivity is one when joining tables without predicates


• Often means very large join results, probably sub-optimal


• (Heuristic may discard optimal order in special cases)
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H3: Use "Left-Deep Plans"

⨝

A B

⨝

C

D⨝
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Why Left-Deep Plans?

• Allows pipelining: joins pass on result parts in-memory


• Allows to use indices on join columns (of base tables)
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Focus on "Left-Deep Plans"

⨝

A B

⨝

C

D⨝
Pipelin

ing
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Naive Plan Enumeration

• Generate every possible plan


• Estimate cost for each plan


• Select plan with minimal cost
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Asymptotic Analysis

• Number of join orders can grow quickly O(nrTables! ).


• Number of join orders lower-bounds number of plans


• Enumerating plans is considered impractical
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Principle of Optimality

• Want cheapest plan to join set of tables


• This plan joins table subsets "on the way"


• Assume we use sub-optimal plan for joining table subset


• Replacing by a better plan can only improve overall cost


• This is generally called the principle of optimality
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Efficient Optimization

• Find optimal plans for (smaller) sub-queries first


• Sub-query: joins subsets of tables


• Compose optimal plans from optimal sub-query plans
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Dynamic Programming
C⨝O⨝P
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Dynamic Programming
C⨝O⨝P

C⨝O C⨝P O⨝P
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Dynamic Programming
C⨝O⨝P

C⨝O C⨝P O⨝P

C O P
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Dynamic Programming
C⨝O⨝P

C⨝O C⨝P O⨝P

C O PPhase 1
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Dynamic Programming
C⨝O⨝P

C⨝O C⨝P O⨝P

C O PPhase 1

Phase 2
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Dynamic Programming
C⨝O⨝P

C⨝O C⨝P O⨝P

C O PPhase 1

Phase 2

Phase 3
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Dynamic Programming
C⨝O⨝P

C⨝O C⨝P O⨝P

C O PPhase 1

Phase 2

Phase 3

O(2nrTables * ...)


