Two-Phase Locking

Immanuel Trummer

itrummer@cornell.edu
www.itrummer.org

Database Management
Systems (DBMS)

Connections, Security, Utilities, ...

Query Processor

Storage Manager

[RG, Sec. 19]

Concurrency Control

Transactions

Concu 11-10(2"88 Picks cheapest schedule
Control among good ones

Schedule
(Ordered Transaction Steps)

Concurrency Control
Protocols

e Have seen desirable properties of schedules
 Conflict serializability: efficient and quite permissive
 Want recoverable schedules, possibly ACA or strict

e Now discuss protocols to enforce such schedules
* Allowing more schedules: more optimization possible

e Ok with less schedules if mechanism more efficient

Lock-Based CC

 Lock: permission to operate on specific objects
* Transactions need lock to work on object
 Transactions obtain locks via a lock request
* May have to wait until desired lock is granted
* Lock manager component grants locks

e Keeps track of which transaction holds which locks

Simple Locking Strategy

Use one lock for the entire database
Transactions requests lock at transactions start
Transaction gives back lock at transaction end

Only one transaction can hold at the same time

How Does This
Perform?

Refining Lock Granularity

* Jransactions can work on different objects in parallel
* Enable by locking specific DB objects (instead of DB)
* |Locking protocol summary:
* Transaction requests locks on all its objects at start
e Waits until all locks have been granted

e TJransaction executes and releases locks at end

Introducing Lock Types

* All conflicts involve some write operation

* Multiple transactions can read objects without conflicts

* |dea: distinguish between read and write locks

* Read (aka shared) locks allow only read access

e Write (aka exclusive) locks allow read+write access

e Transactions specifically request either read or write lock

 |ock manager may grant multiple read locks on same object

Slides by Immanuel Trummer, Cornell University

Release Locks Early

e So far: transactions request locks at start, release at end
* Releasing locks earlier may increase parallelism

* Release lock after last operation on associated object
 But doing so may lead to cascading aborts, e.g.:

e W1(A) [Lock on A from 1 — 2] R2(A) A1

Acquire Locks Late

* Acquire locks directly before read or write operation
e (So far: acquired all locks at transaction start)

* May improve performance by increasing parallelism

* May however lead to deadlocks:
 Transaction 1 acquires lock on A, now waiting for B
e [ransaction 2 acquires lock on B, now waiting for A

* Transaction are both waiting for each other, no progress

Slides by Immanuel Trummer, Cornell University

Two-Phase Locking

e Combines all of the aforementioned optimizations
* Fine-grained locks on single objects
e Distinguishes different lock types
* Locks may be acquired late (depends on 2PL variant)
* Locks may be released early (depends on 2PL variant)

e But restrictions on when locks are acquired/released

The Two Phases of 2PL

Nr. Locks
Held

Transaction Time Transaction
Start End

Two Phases Summary

Each transaction has two separate phases with 2PL
First phase: transaction may acquire locks but no release
Second phase: transaction may only release locks

Will see later that this restriction is necessary!

e (Guarantees conflict-serializable schedules

Two Phase Locking Variants

e Conservative 2PL: acquire all locks at transaction start
e Strict 2PL: release all locks at transaction end
e Can also combine the two (conservative strict 2PL)

* Plain 2PL makes no restrictions on locking periods

lllustration of 2PL Variants

| . Non-
 Conservative | :
 Conservative

..

..

Non-Strict I\ /\

Pros and Const of Variants

Being non-conservative or non-strict is more permissive
* Allows more transactions to proceed in paraliel
Conservative 2PL prevents deadlocks

Strict 2PL prevents cascading aborts

Optimal variant depends on workload

e E.g., how likely are deadlocks and cascading aborts?

Analyzing 2PL Schedules

 Agreed on aiming for conflict-serializable schedules

 Will prove that 2PL generates such schedules

Proof Overview

Assume schedule was generated using 2PL

Now imagine conflict graph of schedule
Schedule is conflict serializable if it is acyclic

Will show: assuming cycle leads to contradiction

e Based on lemma introduced next

Release First Lemma

* Lemma: if conflict graph has path from transaction T1 to
transaction T2 then T1 releases some lock before T2
acquires some lock

 Will prove that via induction

* |Induction start: holds for paths of length 1

* Induction step: from paths of length | to i+

Induction Start

Q—©O

(Two transactions with conflict)

Induction Start

W2(A)

Possibility 1: R1(A)

Possibility 2: W1(A) R2(A)

Possibility 3: W1(A) —————————————— > W2(A)

Q—©O

(Two transactions with conflict)

Induction Start

Possibility 1: R1(A) 71 Releases o ACqUIres W2(A)
Lock on A Lockon A

Possibility 2: W1(A) R2(A)
T1 Releases T2 Acquires

(Two transactions with conflict)

Induction Step

o —0

T1 Releases T '
Lock on X TiACa oY
Lock onY

Induction Step

Ti+1 Acquirés
Lock on Z

00 O

Induction Step

Ti+1 Acquirés

Lock on Z
—0—@
1"1_ RileaS;S Ti Acquires Ti Rel
ock on LockonY R T
Lock on Z

Happens Before

(Lemma for paths up to length i)

Induction Step

Ti+1 Acquirés

Lock on Z
—»H»
o_> appens|Before @
T ReleaS;S Ti AcquweYS Ti Re|eases (As on
n n
Lock © Lock © Lock on past slide)

Happens Before

(Lemma for paths up to length i)

Induction Step

Ti+1 Acquires
Lock on Z

—»H»
o_> appens|Before @

T1 ReleaseéS Tj Acquires <« Ti Releases
LockonX LockonY % o, Lockon

(As on
pastshde)

Happens Before

(Lemma for paths up to length i)

Induction Step

Ti+1 Acquirés
Lock on Z

° ' I Gﬁappens|Before |

(As on
pastshde)

Happens Before

(Lemma for
paths up to len '
gth i)
2PL
Properties

Induction Step

Ti+1 Acquirés
Lock on Z

0 ' I Gﬁappens|Before |

T1 as Ti uires '| | Re eases

before

(As on
pastshde)

Happens Before

(Lemma for
paths up to len '
gth i)
2PL
Properties

Wrapping Up Proof

Lemma: path from T1 to T2 - T1 releases lock before T2
acquires lock

Cycle means T1 releases lock before T1 acquires lock
2PL does not acquire lock after releasing them!
Hence, we cannot have a cycle in conflict graph

Hence, 2PL produces conflict serializable schedules

2PL vs. Conflict Serializable

e 2PL only produces conflict serializable schedules
 But can 2PL produce all conflict serializable schedules?
* The answer is "No" as demonstrated below:
e W1i(A) R2(A) C2 R3(B) C3 W1(B) C1
 Conflict graph has three nodes, two edges — no cycle

e Could this have been produced by 2PL?

Classes of Schedules

All Schedules

