
Two-Phase Locking
Immanuel Trummer 
itrummer@cornell.edu

www.itrummer.org

Slides by Immanuel Trummer, Cornell University

Database Management
Systems (DBMS)

D
BM

S
In

te
rf

ac
eApplication 1

Application 2

...

Data

Connections, Security, Utilities, ...

Query Processor
Query Parser Query Rewriter

Query Optimizer Query Executor

Storage Manager
Data Access Buffer Manager

Transaction Manager Recovery Manager

[RG, Sec. 19]

Slides by Immanuel Trummer, Cornell University

Concurrency Control

Concurrency  
Control

Transactions

Schedule 
(Ordered Transaction Steps)

Picks cheapest schedule 
among good ones

Slides by Immanuel Trummer, Cornell University

Concurrency Control
Protocols

• Have seen desirable properties of schedules

• Conflict serializability: efficient and quite permissive

• Want recoverable schedules, possibly ACA or strict

• Now discuss protocols to enforce such schedules

• Allowing more schedules: more optimization possible

• Ok with less schedules if mechanism more efficient

Slides by Immanuel Trummer, Cornell University

Lock-Based CC
• Lock: permission to operate on specific objects

• Transactions need lock to work on object

• Transactions obtain locks via a lock request

• May have to wait until desired lock is granted

• Lock manager component grants locks

• Keeps track of which transaction holds which locks

Slides by Immanuel Trummer, Cornell University

Simple Locking Strategy

• Use one lock for the entire database

• Transactions requests lock at transactions start

• Transaction gives back lock at transaction end

• Only one transaction can hold at the same time

Slides by Immanuel Trummer, Cornell University

How Does This
Perform?

Slides by Immanuel Trummer, Cornell University

Refining Lock Granularity

• Transactions can work on different objects in parallel

• Enable by locking specific DB objects (instead of DB)

• Locking protocol summary:

• Transaction requests locks on all its objects at start

• Waits until all locks have been granted

• Transaction executes and releases locks at end

Slides by Immanuel Trummer, Cornell University

Introducing Lock Types
• All conflicts involve some write operation

• Multiple transactions can read objects without conflicts

• Idea: distinguish between read and write locks

• Read (aka shared) locks allow only read access

• Write (aka exclusive) locks allow read+write access

• Transactions specifically request either read or write lock

• Lock manager may grant multiple read locks on same object

Slides by Immanuel Trummer, Cornell University

Release Locks Early

• So far: transactions request locks at start, release at end

• Releasing locks earlier may increase parallelism

• Release lock after last operation on associated object

• But doing so may lead to cascading aborts, e.g.:

• W1(A) [Lock on A from 1 → 2] R2(A) A1

Slides by Immanuel Trummer, Cornell University

Acquire Locks Late
• Acquire locks directly before read or write operation

• (So far: acquired all locks at transaction start)

• May improve performance by increasing parallelism

• May however lead to deadlocks:

• Transaction 1 acquires lock on A, now waiting for B

• Transaction 2 acquires lock on B, now waiting for A

• Transaction are both waiting for each other, no progress

Slides by Immanuel Trummer, Cornell University

Two-Phase Locking
• Combines all of the aforementioned optimizations

• Fine-grained locks on single objects

• Distinguishes different lock types

• Locks may be acquired late (depends on 2PL variant)

• Locks may be released early (depends on 2PL variant)

• But restrictions on when locks are acquired/released

Slides by Immanuel Trummer, Cornell University

The Two Phases of 2PL

TimeTransaction 
Start

Transaction 
End

Lock
 Acq

uisi
tio

n Phas
e 

(N
o Lock

s R
ele

as
ed

!) Lock Release Phase 

(No Locks Acquired!)

Nr. Locks 
Held

Slides by Immanuel Trummer, Cornell University

Two Phases Summary

• Each transaction has two separate phases with 2PL

• First phase: transaction may acquire locks but no release

• Second phase: transaction may only release locks

• Will see later that this restriction is necessary!

• Guarantees conflict-serializable schedules

Slides by Immanuel Trummer, Cornell University

Two Phase Locking Variants

• Conservative 2PL: acquire all locks at transaction start

• Strict 2PL: release all locks at transaction end

• Can also combine the two (conservative strict 2PL)

• Plain 2PL makes no restrictions on locking periods

Slides by Immanuel Trummer, Cornell University

Illustration of 2PL Variants

Conservative Non-
Conservative

Strict

Non-Strict

Slides by Immanuel Trummer, Cornell University

Pros and Const of Variants

• Being non-conservative or non-strict is more permissive

• Allows more transactions to proceed in parallel

• Conservative 2PL prevents deadlocks

• Strict 2PL prevents cascading aborts

• Optimal variant depends on workload

• E.g., how likely are deadlocks and cascading aborts?

Slides by Immanuel Trummer, Cornell University

Analyzing 2PL Schedules

• Agreed on aiming for conflict-serializable schedules

• Will prove that 2PL generates such schedules

Slides by Immanuel Trummer, Cornell University

Proof Overview

• Assume schedule was generated using 2PL

• Now imagine conflict graph of schedule

• Schedule is conflict serializable if it is acyclic

• Will show: assuming cycle leads to contradiction

• Based on lemma introduced next

Slides by Immanuel Trummer, Cornell University

Release First Lemma

• Lemma: if conflict graph has path from transaction T1 to
transaction T2 then T1 releases some lock before T2
acquires some lock

• Will prove that via induction

• Induction start: holds for paths of length 1

• Induction step: from paths of length I to i+1

Slides by Immanuel Trummer, Cornell University

Induction Start

1 2

(Two transactions with conflict)

Slides by Immanuel Trummer, Cornell University

Induction Start

1 2

(Two transactions with conflict)

Possibility 1: R1(A) W2(A)

Possibility 2: W1(A) R2(A)

Possibility 3: W1(A) W2(A)

Slides by Immanuel Trummer, Cornell University

Induction Start

1 2

(Two transactions with conflict)

Possibility 1: R1(A) W2(A)

Possibility 2: W1(A) R2(A)

Possibility 3: W1(A) W2(A)

T1 Releases  
Lock on A

T2 Acquires  
Lock on A

T1 Releases  
Lock on A

T2 Acquires  
Lock on A

T1 Releases  
Lock on A

T2 Acquires  
Lock on A

Slides by Immanuel Trummer, Cornell University

Induction Step

1 i...

T1 Releases  
Lock on X

Ti Acquires  
Lock on Y

Slides by Immanuel Trummer, Cornell University

Induction Step

1 i... i+1

T1 Releases  
Lock on X

Ti Acquires  
Lock on Y

Ti Releases  
Lock on Z

Ti+1 Acquires  
Lock on Z

Slides by Immanuel Trummer, Cornell University

Induction Step

1 i... i+1

T1 Releases  
Lock on X

Ti Acquires  
Lock on Y

Ti Releases  
Lock on Z

(Lemma for paths up to length i)

Ti+1 Acquires  
Lock on Z

Happens Before

Slides by Immanuel Trummer, Cornell University

Induction Step

1 i... i+1

T1 Releases  
Lock on X

Ti Acquires  
Lock on Y

Ti Releases  
Lock on Z

(Lemma for paths up to length i)

Ti+1 Acquires  
Lock on Z

(As on
past slide)

Happens Before

Happens Before

Slides by Immanuel Trummer, Cornell University

Induction Step

1 i... i+1

T1 Releases  
Lock on X

Ti Acquires  
Lock on Y

Ti Releases  
Lock on Z

(Lemma for paths up to length i)

Ti+1 Acquires  
Lock on Z

(As on
past slide)

Happens Before

Happens Before

?

Slides by Immanuel Trummer, Cornell University

Induction Step

1 i... i+1

T1 Releases  
Lock on X

Ti Acquires  
Lock on Y

Ti Releases  
Lock on Z

(Lemma for paths up to length i)

Ti+1 Acquires  
Lock on Z

(As on
past slide)

Happens Before

Happens Before

?

2PL
Properties

Slides by Immanuel Trummer, Cornell University

Induction Step

1 i... i+1

T1 Releases  
Lock on X

Ti Acquires  
Lock on Y

Ti Releases  
Lock on Z

(Lemma for paths up to length i)

Ti+1 Acquires  
Lock on Z

(As on
past slide)

Happens Before

Happens Before

Happens
before

2PL
Properties

Slides by Immanuel Trummer, Cornell University

Wrapping Up Proof

• Lemma: path from T1 to T2 - T1 releases lock before T2
acquires lock

• Cycle means T1 releases lock before T1 acquires lock

• 2PL does not acquire lock after releasing them!

• Hence, we cannot have a cycle in conflict graph

• Hence, 2PL produces conflict serializable schedules

Slides by Immanuel Trummer, Cornell University

2PL vs. Conflict Serializable

• 2PL only produces conflict serializable schedules

• But can 2PL produce all conflict serializable schedules?

• The answer is "No" as demonstrated below:

• W1(A) R2(A) C2 R3(B) C3 W1(B) C1

• Conflict graph has three nodes, two edges → no cycle

• Could this have been produced by 2PL?

Slides by Immanuel Trummer, Cornell University

Classes of Schedules

Final State  
Serializable

All Schedules

View  
Serializable Serial

Conflict 
Serializable

2PL

