
More on Locking
Immanuel Trummer 
itrummer@cornell.edu


www.itrummer.org



Slides by Immanuel Trummer, Cornell University

Database Management 
Systems (DBMS)

D
BM

S 
In

te
rf

ac
eApplication 1

Application 2

...

Data

Connections, Security, Utilities, ...

Query Processor
Query Parser Query Rewriter

Query Optimizer Query Executor

Storage Manager
Data Access Buffer Manager

Transaction Manager Recovery Manager

[RG, Sec. 19]



Slides by Immanuel Trummer, Cornell University

Outlook

• Handling deadlocks


• Handling phantoms


• Efficient index locking


• Multi-granularity locking



Slides by Immanuel Trummer, Cornell University

Deadlocks



Slides by Immanuel Trummer, Cornell University

Handling Deadlocks
• Deadlocks can arise when using non-conservative 2PL


• Deadlock: transactions waiting in a "circle"


• May be acceptable if deadlocks are rare


• Two ways for handling deadlocks


• Detect and resolve deadlocks


• Prevent deadlocks from happening



Slides by Immanuel Trummer, Cornell University

Task: Generate 
Deadlock in Postgres!



Slides by Immanuel Trummer, Cornell University

Deadlock Detection
• Simplest option: assume deadlock after timeout


• Maintain waits-for graph to detect deadlocks


• One node for each transaction


• Edge from T1 to T2 if T1 waits for lock held by T2


• Edges are added as lock requests come in


• Cycle in waits-for graph indicates a deadlock



Slides by Immanuel Trummer, Cornell University

Resolving Deadlocks

• Only possibility: abort one deadlocked transaction


• Aborted transaction is typically restarted


• Can try to optimize selection of aborted transaction


• E.g., abort youngest transaction for least overhead



Slides by Immanuel Trummer, Cornell University

Avoiding Deadlocks
• Proactively abort transactions that may cause deadlocks


• Priority based on timestamps (older transaction - higher priority)


• Transaction T1 needs lock held by T2 - Wound-wait protocol: 


• T1 causes T2 abort if T1 has higher priority


• T1 waits for lock from T2 if T1 has lower priority


• Transaction T1 needs lock held by T2 - Wait-die protocol:


• T1 waits for lock from T2 if T1 has higher priority


• T1 aborts itself if it has lower priority than T2



Slides by Immanuel Trummer, Cornell University

Wound Wait 
Deadlock Prevention Proof

• A deadlock means transactions wait in a cycle


• Only lower priority transaction can wait for higher priority


• Due to definition of wound-wait protocol


• Assume cycle in waits-for graph, transaction T1 in cycle


• T1 → T2: T1 must have lower priority than T2


• T1 → T2 → T3: T1 must have lower priority than T3


• T1 → ... → T1: T1 must have lower priority than T1


• Leads to a contradiction so no cycle is possible!



Slides by Immanuel Trummer, Cornell University

Wait-Die 
Deadlock Prevention Proof

• A deadlock means transactions wait in a cycle


• Only higher priority transaction can wait for lower priority


• Due to definition of wait-die protocol


• Assume cycle in waits-for graph, transaction T1 in cycle


• T1 → T2: T1 must have higher priority than T2


• T1 → T2 → T3: T1 must have higher priority than T3


• T1 → ... → T1: T1 must have higher priority than T1


• Leads to a contradiction so no cycle is possible!



Slides by Immanuel Trummer, Cornell University

Wound-Wait vs. Wait-Die

• Advantage of Wait-Die:


• Transactions that acquired all locks won't abort


• Disadvantage of Wait-Die:


• Young transaction may re-abort for same reason



Slides by Immanuel Trummer, Cornell University

Avoiding Starvation

• Higher priority transaction is never restarted for both


• When restarting transaction, assign original timestamp


• So transaction will be eventually prioritized


• Avoids starvation (i.e., no transaction never processed)



Slides by Immanuel Trummer, Cornell University

Phantoms



Slides by Immanuel Trummer, Cornell University

Phantom Example
• Transaction 1 selects students with name starting with F


• Transaction 2 inserts new student "Frank"


• Transaction 1 selects students starting with F again


• Suddenly we see a new student in the query result


• Similar to unrepeatable read, caused by insertions


• Problem: 2PL only locked students present at first query



Slides by Immanuel Trummer, Cornell University

Avoiding Phantoms
• Predicate locking: lock tuples satisfying certain predicate


• E.g., predicate "name starts with F" in the example


• Locks current and future entries equally


• Complex to realize for arbitrary predicates


• Can use index when considering equality predicates


• Lock index page that would change at insertion


• Cannot insert as long as index page is locked



Slides by Immanuel Trummer, Cornell University

Efficient Index 
Locking



Slides by Immanuel Trummer, Cornell University

Tree Indexes: Why Not 
Use Generic 2PL?



Slides by Immanuel Trummer, Cornell University

Locking in Tree Indexes
• Observation: we traverse tree into one direction only


• Locking one node sufficient to block other transactions


• I.e., keeping later transactions out of current sub-tree


• Locking for index lookups ("crabbing"):


• Identify next node (child node or root at start)


• Lock next (read lock), then unlock parent - repeat



Slides by Immanuel Trummer, Cornell University

Illustration of Crabbing
Lock



Slides by Immanuel Trummer, Cornell University

Illustration of Crabbing
Lock

Lock



Slides by Immanuel Trummer, Cornell University

Illustration of Crabbing

Lock



Slides by Immanuel Trummer, Cornell University

Illustration of Crabbing

Lock

Lock



Slides by Immanuel Trummer, Cornell University

Illustration of Crabbing

Lock



Slides by Immanuel Trummer, Cornell University

Locking for Index Updates
• So far: only considered index lookups; next: updates


• Index updates change index leaf nodes, may propagate up


• However, updates may not propagate upwards of "safe" nodes


• Safe node is less than full (insertions)/more than half full (deletions)


• When traversing tree, release prior locks at each safe node


• May pessimistically request write locks but reduces performance


• Can optimistically request read locks for all nodes except leaf


• Bets on no propagation, may have to restart if we lose



Slides by Immanuel Trummer, Cornell University

Multi-Granularity 
Locks



Slides by Immanuel Trummer, Cornell University

Multiple-Granularity Locks
• Fine-grained locking can increase degree of parallelism 

• But fine-grained locking also increases locking overheads 

• Best granularity may depend on query


• E.g., whether we access most or few table rows


• Multiple-granularity locking mixes lock granularities


• Have locks for entire table and locks for single rows


• Challenge: granting locks of diverse granularity consistently



Slides by Immanuel Trummer, Cornell University

Hierarchy of DB Objects
Database

Table 1

Page

Tuple

Contains

Table 2

PagePage ...

TupleTuple...



Slides by Immanuel Trummer, Cornell University

Multi-Granularity Locking
• Cannot treat locks at different granularities separately


• May grant conflicting locks otherwise


• Need locks on containing objects before locking object


• Introduce new type of lock: intention locks


• IS (Intention Shared):  
want shared lock on contained object


• IX (Intention Exclusive):  
want exclusive lock on contained object



Slides by Immanuel Trummer, Cornell University

Lock Compatibility
IS IX S X

IS ✔ ✔ ✔ ✘

IX ✔ ✔ ✘ ✘

S ✔ ✘ ✔ ✘

X ✘ ✘ ✘ ✘



Slides by Immanuel Trummer, Cornell University

Lock Compatibility
IS IX S X

IS ✔ ✔ ✔ ✘

IX ✔ ✔ ✘ ✘

S ✔ ✘ ✔ ✘

X ✘ ✘ ✘ ✘



Slides by Immanuel Trummer, Cornell University

Lock Compatibility
IS IX S X

IS ✔ ✔ ✔ ✘

IX ✔ ✔ ✘ ✘

S ✔ ✘ ✔ ✘

X ✘ ✘ ✘ ✘

Want shared lock on 
contained object

Want 
exclusive lock on 
contained object



Slides by Immanuel Trummer, Cornell University

Using Intention Locks

• Need IS lock on ancestors before requesting Shared lock


• Need IX lock on ancestors before Exclusive lock


• Release intention locks from leaf to root node


• Otherwise may have inconsistent locks



Slides by Immanuel Trummer, Cornell University

Inconsistent Locks
Database

Table 1

Page

Tuple

Contains

Table 2

PagePage ...

TupleTuple...

T1:S

T2:X



Slides by Immanuel Trummer, Cornell University

Intention Locks Help
Database

Table 1

Page

Tuple

Contains

Table 2

PagePage ...

TupleTuple...

T1:S

T2:X

T1:IS

T2:IX

T2:IX



Slides by Immanuel Trummer, Cornell University

Intention Locks Help
Database

Table 1

Page

Tuple

Contains

Table 2

PagePage ...

TupleTuple...

T1:S

T2:X

T1:IS

T2:IX

T2:IX

NOT ALLOWED!


