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Outlook

• Handling deadlocks


• Handling phantoms


• Efficient index locking


• Multi-granularity locking
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Deadlocks
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Handling Deadlocks
• Deadlocks can arise when using non-conservative 2PL


• Deadlock: transactions waiting in a "circle"


• May be acceptable if deadlocks are rare


• Two ways for handling deadlocks


• Detect and resolve deadlocks


• Prevent deadlocks from happening
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Task: Generate 
Deadlock in Postgres!
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Deadlock Detection
• Simplest option: assume deadlock after timeout


• Maintain waits-for graph to detect deadlocks


• One node for each transaction


• Edge from T1 to T2 if T1 waits for lock held by T2


• Edges are added as lock requests come in


• Cycle in waits-for graph indicates a deadlock
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Resolving Deadlocks

• Only possibility: abort one deadlocked transaction


• Aborted transaction is typically restarted


• Can try to optimize selection of aborted transaction


• E.g., abort youngest transaction for least overhead
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Avoiding Deadlocks
• Proactively abort transactions that may cause deadlocks


• Priority based on timestamps (older transaction - higher priority)


• Transaction T1 needs lock held by T2 - Wound-wait protocol: 


• T1 causes T2 abort if T1 has higher priority


• T1 waits for lock from T2 if T1 has lower priority


• Transaction T1 needs lock held by T2 - Wait-die protocol:


• T1 waits for lock from T2 if T1 has higher priority


• T1 aborts itself if it has lower priority than T2
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Wound Wait 
Deadlock Prevention Proof

• A deadlock means transactions wait in a cycle


• Only lower priority transaction can wait for higher priority


• Due to definition of wound-wait protocol


• Assume cycle in waits-for graph, transaction T1 in cycle


• T1 → T2: T1 must have lower priority than T2


• T1 → T2 → T3: T1 must have lower priority than T3


• T1 → ... → T1: T1 must have lower priority than T1


• Leads to a contradiction so no cycle is possible!
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Wait-Die 
Deadlock Prevention Proof

• A deadlock means transactions wait in a cycle


• Only higher priority transaction can wait for lower priority


• Due to definition of wait-die protocol


• Assume cycle in waits-for graph, transaction T1 in cycle


• T1 → T2: T1 must have higher priority than T2


• T1 → T2 → T3: T1 must have higher priority than T3


• T1 → ... → T1: T1 must have higher priority than T1


• Leads to a contradiction so no cycle is possible!
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Wound-Wait vs. Wait-Die

• Advantage of Wait-Die:


• Transactions that acquired all locks won't abort


• Disadvantage of Wait-Die:


• Young transaction may re-abort for same reason



Slides by Immanuel Trummer, Cornell University

Avoiding Starvation

• Higher priority transaction is never restarted for both


• When restarting transaction, assign original timestamp


• So transaction will be eventually prioritized


• Avoids starvation (i.e., no transaction never processed)
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Phantoms
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Phantom Example
• Transaction 1 selects students with name starting with F


• Transaction 2 inserts new student "Frank"


• Transaction 1 selects students starting with F again


• Suddenly we see a new student in the query result


• Similar to unrepeatable read, caused by insertions


• Problem: 2PL only locked students present at first query
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Avoiding Phantoms
• Predicate locking: lock tuples satisfying certain predicate


• E.g., predicate "name starts with F" in the example


• Locks current and future entries equally


• Complex to realize for arbitrary predicates


• Can use index when considering equality predicates


• Lock index page that would change at insertion


• Cannot insert as long as index page is locked
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Efficient Index 
Locking
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Tree Indexes: Why Not 
Use Generic 2PL?
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Locking in Tree Indexes
• Observation: we traverse tree into one direction only


• Locking one node sufficient to block other transactions


• I.e., keeping later transactions out of current sub-tree


• Locking for index lookups ("crabbing"):


• Identify next node (child node or root at start)


• Lock next (read lock), then unlock parent - repeat
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Illustration of Crabbing
Lock



Slides by Immanuel Trummer, Cornell University

Illustration of Crabbing
Lock

Lock
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Illustration of Crabbing

Lock
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Illustration of Crabbing

Lock

Lock



Slides by Immanuel Trummer, Cornell University

Illustration of Crabbing

Lock
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Locking for Index Updates
• So far: only considered index lookups; next: updates


• Index updates change index leaf nodes, may propagate up


• However, updates may not propagate upwards of "safe" nodes


• Safe node is less than full (insertions)/more than half full (deletions)


• When traversing tree, release prior locks at each safe node


• May pessimistically request write locks but reduces performance


• Can optimistically request read locks for all nodes except leaf


• Bets on no propagation, may have to restart if we lose
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Multi-Granularity 
Locks
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Multiple-Granularity Locks
• Fine-grained locking can increase degree of parallelism 

• But fine-grained locking also increases locking overheads 

• Best granularity may depend on query


• E.g., whether we access most or few table rows


• Multiple-granularity locking mixes lock granularities


• Have locks for entire table and locks for single rows


• Challenge: granting locks of diverse granularity consistently
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Hierarchy of DB Objects
Database
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Page
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PagePage ...

TupleTuple...
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Multi-Granularity Locking
• Cannot treat locks at different granularities separately


• May grant conflicting locks otherwise


• Need locks on containing objects before locking object


• Introduce new type of lock: intention locks


• IS (Intention Shared):  
want shared lock on contained object


• IX (Intention Exclusive):  
want exclusive lock on contained object
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Lock Compatibility
IS IX S X

IS ✔ ✔ ✔ ✘

IX ✔ ✔ ✘ ✘

S ✔ ✘ ✔ ✘

X ✘ ✘ ✘ ✘
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Lock Compatibility
IS IX S X

IS ✔ ✔ ✔ ✘

IX ✔ ✔ ✘ ✘
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Lock Compatibility
IS IX S X

IS ✔ ✔ ✔ ✘

IX ✔ ✔ ✘ ✘

S ✔ ✘ ✔ ✘

X ✘ ✘ ✘ ✘

Want shared lock on 
contained object

Want 
exclusive lock on 
contained object
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Using Intention Locks

• Need IS lock on ancestors before requesting Shared lock


• Need IX lock on ancestors before Exclusive lock


• Release intention locks from leaf to root node


• Otherwise may have inconsistent locks
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Inconsistent Locks
Database
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Intention Locks Help
Database
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Intention Locks Help
Database
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