More on Locking

Immanuel Trummer itrummer@cornell.edu www.itrummer.org

Database Management Systems (DBMS)

Connections, Security, Utilities, ... **Query Processor Query Parser Query Rewriter Query Optimizer Query Executor** Storage Manager **Buffer Manager** Data Access **Recovery Manager** Transaction Manager

[RG, Sec. 19]

Outlook

- Handling deadlocks
- Handling phantoms
- Efficient index locking
- Multi-granularity locking

Deadlocks

Handling Deadlocks

- Deadlocks can arise when using non-conservative 2PL
 - Deadlock: transactions waiting in a "circle"
 - May be acceptable if deadlocks are rare
- Two ways for handling deadlocks
 - Detect and resolve deadlocks
 - Prevent deadlocks from happening

Task: Generate Deadlock in Postgres!

Deadlock Detection

- Simplest option: assume deadlock after timeout
- Maintain waits-for graph to detect deadlocks
 - One node for each transaction
 - Edge from T1 to T2 if T1 waits for lock held by T2
 - Edges are added as lock requests come in
 - Cycle in waits-for graph indicates a deadlock

Resolving Deadlocks

- Only possibility: abort one deadlocked transaction
- Aborted transaction is typically restarted
- Can try to optimize selection of aborted transaction
 - E.g., abort youngest transaction for least overhead

Avoiding Deadlocks

- Proactively abort transactions that may cause deadlocks
- Priority based on timestamps (older transaction higher priority)
- Transaction T1 needs lock held by T2 Wound-wait protocol:
 - T1 causes T2 abort if T1 has higher priority
 - T1 waits for lock from T2 if T1 has lower priority
- Transaction T1 needs lock held by T2 Wait-die protocol:
 - T1 waits for lock from T2 if T1 has higher priority
 - T1 aborts itself if it has lower priority than T2

Wound Wait Deadlock Prevention Proof

- A deadlock means transactions wait in a cycle
- Only lower priority transaction can wait for higher priority
 - Due to definition of wound-wait protocol
- Assume cycle in waits-for graph, transaction T1 in cycle
 - T1 → T2: T1 must have lower priority than T2
 - T1 → T2 → T3: T1 must have lower priority than T3
 - T1 → ... → T1: T1 must have lower priority than T1
 - Leads to a contradiction so no cycle is possible!

Wait-Die Deadlock Prevention Proof

- A deadlock means transactions wait in a cycle
- Only higher priority transaction can wait for lower priority
 - Due to definition of wait-die protocol
- Assume cycle in waits-for graph, transaction T1 in cycle
 - T1 → T2: T1 must have higher priority than T2
 - T1 → T2 → T3: T1 must have higher priority than T3
 - T1 → ... → T1: T1 must have higher priority than T1
 - Leads to a contradiction so no cycle is possible!

Wound-Wait vs. Wait-Die

- Advantage of Wait-Die:
 - Transactions that acquired all locks won't abort
- Disadvantage of Wait-Die:
 - Young transaction may re-abort for same reason

Avoiding Starvation

- Higher priority transaction is never restarted for both
- When restarting transaction, assign original timestamp
- So transaction will be eventually prioritized
- Avoids starvation (i.e., no transaction never processed)

Phantoms

Phantom Example

- Transaction 1 selects students with name starting with F
- Transaction 2 inserts new student "Frank"
- Transaction 1 selects students starting with F again
 - Suddenly we see a new student in the query result
 - Similar to unrepeatable read, caused by insertions
- Problem: 2PL only locked students present at first query

Avoiding Phantoms

- Predicate locking: lock tuples satisfying certain predicate
 - E.g., predicate "name starts with F" in the example
 - Locks current and future entries equally
 - Complex to realize for arbitrary predicates
- Can use index when considering equality predicates
 - Lock index page that would change at insertion
 - Cannot insert as long as index page is locked

Efficient Index Locking

Tree Indexes: Why Not Use Generic 2PL?

Locking in Tree Indexes

- Observation: we traverse tree into one direction only
- Locking one node sufficient to block other transactions
 - I.e., keeping later transactions out of current sub-tree
- Locking for index lookups ("crabbing"):
 - Identify next node (child node or root at start)
 - Lock next (read lock), then unlock parent repeat

Locking for Index Updates

- So far: only considered index lookups; next: updates
- Index updates change index leaf nodes, may propagate up
- However, updates may not propagate upwards of "safe" nodes
 - Safe node is less than full (insertions)/more than half full (deletions)
- When traversing tree, release prior locks at each safe node
- May pessimistically request write locks but reduces performance
- Can optimistically request read locks for all nodes except leaf
 - Bets on no propagation, may have to restart if we lose

Multi-Granularity Locks

Multiple-Granularity Locks

- Fine-grained locking can increase degree of parallelism
- But fine-grained locking also increases locking overheads
- Best granularity may depend on query
 - E.g., whether we access most or few table rows
- Multiple-granularity locking mixes lock granularities
 - Have locks for entire table and locks for single rows
- Challenge: granting locks of diverse granularity consistently

Hierarchy of DB Objects

Multi-Granularity Locking

- Cannot treat locks at different granularities separately
 - May grant conflicting locks otherwise
- Need locks on containing objects before locking object
- Introduce new type of lock: intention locks
 - IS (Intention Shared): want shared lock on contained object
 - IX (Intention Exclusive): want exclusive lock on contained object

Lock Compatibility

Lock Compatibility

Lock Want shared lock on contained object atibility

Using Intention Locks

- Need IS lock on ancestors before requesting Shared lock
- Need IX lock on ancestors before Exclusive lock
- Release intention locks from leaf to root node
 - Otherwise may have inconsistent locks

Inconsistent Locks

Intention Locks Help

Intention Locks Help

