
Concurrency Control
Without Locking

Immanuel Trummer 
itrummer@cornell.edu

www.itrummer.org

Slides by Immanuel Trummer, Cornell University

Database Management
Systems (DBMS)

D
BM

S
In

te
rf

ac
eApplication 1

Application 2

...

Data

Connections, Security, Utilities, ...

Query Processor
Query Parser Query Rewriter

Query Optimizer Query Executor

Storage Manager
Data Access Buffer Manager

Transaction Manager Recovery Manager

[RG, Sec. 19.5]

Slides by Immanuel Trummer, Cornell University

Outlook

• Optimistic concurrency control

• Timestamp concurrency control

• Multi-version concurrency control

• Snapshot isolation

Slides by Immanuel Trummer, Cornell University

Optimistic CC Motivation
• Locking itself leads to overheads

• E.g., overheads due to lock management

• Possibly overheads due to deadlocks

• Locking prevents conflicts proactively

• Pessimistic assumption: conflicts are likely

• Optimistic concurrency control

• Conflicts are rare, no need to avoid proactively

Slides by Immanuel Trummer, Cornell University

Optimistic CC Bookkeeping

• Need to keep read set and write set for each transaction

• Read set: objects that the transaction read

• Write set: objects that the transaction wrote

Slides by Immanuel Trummer, Cornell University

Execution Phases
• Read

• Read relevant data from database

• Execute transaction on private copy

• Validate

• Check for conflicts with other transactions

• Write

• Publish local changes if no conflicts

Slides by Immanuel Trummer, Cornell University

Validation Phase
• Assign transactions to unique timestamps at validation

• Will try to serialize transactions in timestamp order

• Two transactions cannot have conflicted if

• T1 completes before T2

• T1 completes before T2 starts writing,  
Writes(T1) disjunct with Reads(T2)

• T1 completes reads before T2 completes reads, 
Writes(T1) disjunct with Reads(T2) and Writes(T2)

Slides by Immanuel Trummer, Cornell University

Simplification: Combine
Validation and Write Phase

• Only one transaction can be in validation+write phase

• Only need to consider conflict cases 1 and 2

• Write phases cannot overlap

Slides by Immanuel Trummer, Cornell University

Optimistic CC Overheads

• Must record read and write sets

• Transaction restarts if validation fails

• Critical section during validation/writes

Slides by Immanuel Trummer, Cornell University

Optimistic CC Overheads

• Must record read and write sets

• Transaction restarts if validation fails

• Critical section during validation/writes

Good if probability of conflicts is low

Slides by Immanuel Trummer, Cornell University

Timestamp CC Overview

• We associate transactions with timestamps

• Want to serialize transactions in timestamp order

• Also, we associate each object with timestamps

• Read timestamp: time of last read

• Write timestamp: time of last write

Slides by Immanuel Trummer, Cornell University

Timestamp CC Rules
• TS(T) is timestamp of transaction T

• RTS(A), WTS(A): read & write timestamp of object A

• Transaction T wants to read database object A

• Abort & restart if TS(T) < WTS(A)

• Transaction T wants to write database object A

• Abort & restart if TS(T) < RTS(A)

• What if TS(T) < WTS(A) ... ?

Slides by Immanuel Trummer, Cornell University

Thomas Write Rule
• Transaction T wants to write A but TS(T) < WTS(A)

• Conflicts with serialization order, could abort

• Thomas Write Rule ignores outdated writes instead

• E.g., consider R1(A) W2(A) C2 W1(A) C1

• Not conflict serializable but view-serializable

• Simplifies to R1(A) C2 W1(A) C1

Slides by Immanuel Trummer, Cornell University

Timestamp CC Overheads

• Restarting overheads for aborted transactions

• Need to keep track of object timestamps

• Means space consumption increases

• Overheads for updating timestamps

• Requires write for each operation

Slides by Immanuel Trummer, Cornell University

Multi-version CC (MVCC)
Overview

• Idea: keep multiple versions of database objects

• Doing so helps for instance in the following situation

• R1(A) W1(A) R2(A) W2(B) R1(B) W1(C)

• Not conflict-serializable as written

• Could fix by moving R1(B) before W2(B)

• Making R1(B) read old version of B has same effect

Slides by Immanuel Trummer, Cornell University

MVCC Protocol
• Each transaction receives timestamp when entering

• Will try to serialize transactions in this order

• Each write creates a new version of an object

• Perform write check and abort if not valid

• Version has timestamp of writing transaction

• Read mapped to last version before transaction timestamp

• Transaction with timestamp i reads version with largest
timestamp k such that k<i

Slides by Immanuel Trummer, Cornell University

Write Check
• Want to be consistent with transaction timestamps

• Can transaction with timestamp I write object A?

• Assume transaction with timestamp > I

• Cannot read earlier version of A than I

• Must abort if this has already happened

• Track read timestamps for versions!

Slides by Immanuel Trummer, Cornell University

Abort-Related Behavior

• Aforementioned protocol guarantees serializability

• Need additional mechanisms for abort properties

• E.g., delay commits for recoverability

Slides by Immanuel Trummer, Cornell University

Snapshot Isolation
Overview

• Each transaction operates on database snapshot

• This snapshot is taken once transaction starts

• Uses last committed value for each object

• Maintains multiple object versions internally

• Different from MVCC: no uncommitted values

Slides by Immanuel Trummer, Cornell University

Handling Writes

• Check before commit for overlapping writes

• Everything OK if target objects unchanged

• Otherwise abort & restart transaction

Slides by Immanuel Trummer, Cornell University

Example with SI
• Consider tables A and B with one integer column each

• Consider two transactions that execute one update each

• T1: Insert into B select count(*) from a;

• T2: Insert into A select count(*) from b;

• What happens if both transaction start at same time?

• Is the result equivalent to a serial execution?

Slides by Immanuel Trummer, Cornell University

Write Skew
T1: Insert into B select count(*) from A;
T2: Insert into A select count(*) from B;

Execution Content of A Content of B

T1; T2 1 0

T2; T1 0 1

Snapshot Isolation 0 0

Slides by Immanuel Trummer, Cornell University

Serializability vs.  
SQL Definition

• SQL-92 standard defines isolation via anomalies

• The write skew anomaly is missing, drawing criticism

• Careful, may get SI when choosing serializable isolation

