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Reminder ACID

• Atomicity: no partial executions


• Consistency: data remains consistent


• Isolation: simulate serial execution


• Durability: no lost data
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Reminder ACID
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• Isolation: simulate serial execution


• Durability: no lost data

Focus of Recovery Manager
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Reminder:  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Durability Challenges
• Guarantee: effects of committed transactions persist


• E.g., must still hold in case of sudden power failure


• Changes to data are initially written to buffer pool


• Buffer pool in main memory, therefore volatile!


• Persist each change before commit to hard disk?


• Bad performance (many page writes, small changes)
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Atomicity Challenges
• Guarantee: no transaction is partially executed


• Can leave changes in main memory until commit


• Means each transaction holds many buffer slots


• Bad throughput: few transactions execute concurrently


• Alternative: write changes to disk to free up memory


• Means we have partial results persistent on hard disk


• May need to undo changes to achieve atomicity
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Summary of Options
No Steal (Buffer 

Pages from Ongoing 
Transactions)

Allow Steal 

Force (Every 
Change to Disk)

Poor response time,  
poor throughput Poor response time

No Force Poor throughput Good time & 
throughput
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Summary of Options
No Steal (Buffer 

Pages from Ongoing 
Transactions)

Allow Steal 

Force (Every 
Change to Disk)

Poor response time,  
poor throughput Poor response time

No Force Poor throughput Good time & 
throughput

But What About 
Durability/ 

Atomicity??
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Logging for Durability
• Need to persist changes before commit for durability


• Updating actual data before commit is inefficient


• Need to write lots of pages with small changes


• Idea: only store "deltas" in compact representation


• Write one page with deltas instead of many data pages


• Write deltas before commit for recovery after restart


• Those deltas form (part of) the log
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Logging for Atomicity
• Want to swap buffer pages between ongoing transactions


• Need to persist changes on swapped buffer pages


• Otherwise, changes are lost, losing durability


• May have uncommitted changes persistent on disk


• What if the corresponding transaction aborts at crash?


• Must be able to undo changes to guarantee atomicity


• Solution: write log entries to enable undoing updates
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Write-Ahead Logging
• Write-ahead logging is characterized by two rules


1. Write all log entries of a transaction before commit


2. Write all log entries of a buffer page before persisting


• Rule 1 guarantees durability


• Use log entries for redo in case of a crash


• Rule 2 guarantees atomicity 

• Use log entries for undo in case of a crash
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ARIES Algorithm Overview

• One of the most popular recovery algorithms


• Uses write-ahead logging at run time


• Executes multiple phases after a crash:


• Analysis: determine transactions to undo/redo via log


• Redo: get back to state directly before the crash


• Undo: undo effects of aborted transactions
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Outlook

• ARIES data structures


• ARIES run time behavior


• ARIES recovery algorithm
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ARIES Data Structures
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Types of Log Entries
• Update: states new and prior value after data update


• New value for redo, old value for undo


• Commit: indicates that a transaction committed


• Abort: indicates that a transaction aborted


• End: indicates cleanup for transaction finished


• Compensation: indicates we undid prior operation


• Must keep track in case of crashes during recovery
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Generic Log Entry Fields

• Each log entry has an ID, the log sequence number (LSN)


• TransID: this transaction generated the log entry


• PrevLSN: LSN of previous entry for same transaction


• Type: type of log entry (see previous slide)
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Added Fields for Updates

• PageID: logging update that refers to this page


• Length: so many bytes were changed by update


• Offset: first byte on page affected by update


• Before-Image: original value before the update


• After-Image: new value after the update
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Flushed LSN
• FlushedLSN: log entries persistent up to this entry


• Can exploit to verify rules of write-ahead logging


• Must persist transaction log entries before commit


• Must have flushedLSN ≥ transaction lastLSN


• Must persist log entries about page before disk write


• Must have flushedLSN ≥ page's pageLSN
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Transaction Table

• Contains one entry for each active transaction


• Stores for each transaction three fields:


• TransID: transaction ID


• Status: running/committed/aborted


• LastLSN: ID of last log entry by that transaction
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Dirty Page Table

• Dirty page: in-memory version differs from disk version


• This means changes would be lost by crash


• Dirty page table stores one entry per dirty page, storing


• PageID: ID of dirty page


• RecLSN: LSN of first log entry making page dirty
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Page LastLSN

• The LSN of the last operation changing that page


• Stored for each page in memory and each page on disk


• LasLSN of disk and memory version of page may differ
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How Does the PageLSN of 
In-Memory and Disk Version 

Relate for Dirty Pages?


