
Recovery After 
System Crashes

Immanuel Trummer 
itrummer@cornell.edu


www.itrummer.org



Slides by Immanuel Trummer, Cornell University

Database Management 
Systems (DBMS)

D
BM

S 
In

te
rf

ac
eApplication 1

Application 2

...

Data

Connections, Security, Utilities, ...

Query Processor
Query Parser Query Rewriter

Query Optimizer Query Executor

Storage Manager
Data Access Buffer Manager

Transaction Manager Recovery Manager

[RG, Sec. 20]



Slides by Immanuel Trummer, Cornell University

Reminder ACID

• Atomicity: no partial executions


• Consistency: data remains consistent


• Isolation: simulate serial execution


• Durability: no lost data



Slides by Immanuel Trummer, Cornell University

Reminder ACID

• Atomicity: no partial executions


• Consistency: data remains consistent


• Isolation: simulate serial execution


• Durability: no lost data

Focus of Recovery Manager



Slides by Immanuel Trummer, Cornell University

Desired Behavior

Time

T1

T2

T3

T4

T5

Crash!



Slides by Immanuel Trummer, Cornell University

Desired Behavior

Time

T1

T2

T3

T4

T5

Crash!Undone

Persisted



Slides by Immanuel Trummer, Cornell University

Reminder:  
Memory Hierarchy

Registers

CPU Cache

Main Memory

Flash/USB Memory

Hard Disk

Tape Backup

Fa
st

er
 A

cc
es

s

H
ig

he
r C

ap
ac

ity



Slides by Immanuel Trummer, Cornell University

Reminder:  
Memory Hierarchy

Registers

CPU Cache

Main Memory

Flash/USB Memory

Hard Disk

Tape Backup

Fa
st

er
 A

cc
es

s

H
ig

he
r C

ap
ac

ity

Volatile

Non-Volatile



Slides by Immanuel Trummer, Cornell University

Durability Challenges
• Guarantee: effects of committed transactions persist


• E.g., must still hold in case of sudden power failure


• Changes to data are initially written to buffer pool


• Buffer pool in main memory, therefore volatile!


• Persist each change before commit to hard disk?


• Bad performance (many page writes, small changes)



Slides by Immanuel Trummer, Cornell University

Atomicity Challenges
• Guarantee: no transaction is partially executed


• Can leave changes in main memory until commit


• Means each transaction holds many buffer slots


• Bad throughput: few transactions execute concurrently


• Alternative: write changes to disk to free up memory


• Means we have partial results persistent on hard disk


• May need to undo changes to achieve atomicity



Slides by Immanuel Trummer, Cornell University

Summary of Options
No Steal (Buffer 

Pages from Ongoing 
Transactions)

Allow Steal 

Force (Every 
Change to Disk)

Poor response time,  
poor throughput Poor response time

No Force Poor throughput Good time & 
throughput



Slides by Immanuel Trummer, Cornell University

Summary of Options
No Steal (Buffer 

Pages from Ongoing 
Transactions)

Allow Steal 

Force (Every 
Change to Disk)

Poor response time,  
poor throughput Poor response time

No Force Poor throughput Good time & 
throughput

But What About 
Durability/ 

Atomicity??



Slides by Immanuel Trummer, Cornell University

Logging for Durability
• Need to persist changes before commit for durability


• Updating actual data before commit is inefficient


• Need to write lots of pages with small changes


• Idea: only store "deltas" in compact representation


• Write one page with deltas instead of many data pages


• Write deltas before commit for recovery after restart


• Those deltas form (part of) the log



Slides by Immanuel Trummer, Cornell University

Logging for Atomicity
• Want to swap buffer pages between ongoing transactions


• Need to persist changes on swapped buffer pages


• Otherwise, changes are lost, losing durability


• May have uncommitted changes persistent on disk


• What if the corresponding transaction aborts at crash?


• Must be able to undo changes to guarantee atomicity


• Solution: write log entries to enable undoing updates



Slides by Immanuel Trummer, Cornell University

Write-Ahead Logging
• Write-ahead logging is characterized by two rules


1. Write all log entries of a transaction before commit


2. Write all log entries of a buffer page before persisting


• Rule 1 guarantees durability


• Use log entries for redo in case of a crash


• Rule 2 guarantees atomicity 

• Use log entries for undo in case of a crash



Slides by Immanuel Trummer, Cornell University

ARIES Algorithm Overview

• One of the most popular recovery algorithms


• Uses write-ahead logging at run time


• Executes multiple phases after a crash:


• Analysis: determine transactions to undo/redo via log


• Redo: get back to state directly before the crash


• Undo: undo effects of aborted transactions



Slides by Immanuel Trummer, Cornell University

Outlook

• ARIES data structures


• ARIES run time behavior


• ARIES recovery algorithm



Slides by Immanuel Trummer, Cornell University

Outlook

• ARIES data structures 

• ARIES run time behavior


• ARIES recovery algorithm



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN

Last few log entries, not 
yet on disk



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN

LSN of most recent log 
entry on hard disk



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN

Persisted 
log entries, available after 

crash



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN

Overview of active 
transactions



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN

Overview 
of changed, unpersisted 

pages



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN

LSN of last log entry 
refering to each page



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN

LSN of last change to 
persisted page



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN



Slides by Immanuel Trummer, Cornell University

Types of Log Entries
• Update: states new and prior value after data update


• New value for redo, old value for undo


• Commit: indicates that a transaction committed


• Abort: indicates that a transaction aborted


• End: indicates cleanup for transaction finished


• Compensation: indicates we undid prior operation


• Must keep track in case of crashes during recovery



Slides by Immanuel Trummer, Cornell University

Generic Log Entry Fields

• Each log entry has an ID, the log sequence number (LSN)


• TransID: this transaction generated the log entry


• PrevLSN: LSN of previous entry for same transaction


• Type: type of log entry (see previous slide)



Slides by Immanuel Trummer, Cornell University

Added Fields for Updates

• PageID: logging update that refers to this page


• Length: so many bytes were changed by update


• Offset: first byte on page affected by update


• Before-Image: original value before the update


• After-Image: new value after the update



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN



Slides by Immanuel Trummer, Cornell University

Flushed LSN
• FlushedLSN: log entries persistent up to this entry


• Can exploit to verify rules of write-ahead logging


• Must persist transaction log entries before commit


• Must have flushedLSN ≥ transaction lastLSN


• Must persist log entries about page before disk write


• Must have flushedLSN ≥ page's pageLSN



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN



Slides by Immanuel Trummer, Cornell University

Transaction Table

• Contains one entry for each active transaction


• Stores for each transaction three fields:


• TransID: transaction ID


• Status: running/committed/aborted


• LastLSN: ID of last log entry by that transaction



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN



Slides by Immanuel Trummer, Cornell University

Dirty Page Table

• Dirty page: in-memory version differs from disk version


• This means changes would be lost by crash


• Dirty page table stores one entry per dirty page, storing


• PageID: ID of dirty page


• RecLSN: LSN of first log entry making page dirty



Slides by Immanuel Trummer, Cornell University

Dirty Page Table

• Dirty page: in-memory version differs from disk version


• This means changes would be lost by crash


• Dirty page table stores one entry per dirty page, storing


• PageID: ID of dirty page


• RecLSN: LSN of first log entry making page dirty



Slides by Immanuel Trummer, Cornell University

ARIES Data Structures

Buffer Pool

Data Pages

Main Memory (Volatile)

Hard Disk (Non-Volatile)

Transaction Table

Dirty Page Table

Log Tail

Flushed LSN

Log

Page LastLSN

Page LastLSN



Slides by Immanuel Trummer, Cornell University

Page LastLSN

• The LSN of the last operation changing that page


• Stored for each page in memory and each page on disk


• LasLSN of disk and memory version of page may differ



Slides by Immanuel Trummer, Cornell University

How Does the PageLSN of 
In-Memory and Disk Version 

Relate for Dirty Pages?


