Database Normalization

Immanuel Trummer itrummer@cornell.edu www.itrummer.org

Database Design Process

• Requirement analysis

• Based on use cases, business process descriptions

Conceptual design

- Model what the DB is about, e.g. via ER diagrams
- Schema normalization
 - E.g., reduce data redundancy via transformation

Physical tuning

• E.g., decide which indices to create or sort order

Database Design Process

Requirement analysis

• Based on use cases, business process descriptions

Conceptual design
Model what the DB is about, e.g. via ER diagrams
Schema normalization
E.g., reduce data redundancy via transformation

Physical tuning

• E.g., decide which indices to create or sort order

Database Design Process

Requirement analysis

• Based on use cases, business process descriptions

Conceptual design
 Model what the DB is about, e.g. via ER diagrams
 Schema normalization
 E.g., reduce data redundancy via transformation

Physical tuning

• E.g., decide which indices to create or sort order

Schema Normalization

- Can prepare first sketch of database schema via ER
- Resulting schema will most likely be **sub-optimal**
 - I.e., the schema implies lots of data redundancy
 - Data redundancy leads to various problems
- Optimize initial schema via schema normalization

Roadmap

- Functional dependencies: indicate redundancy
- Normal forms: desirable formal schema properties
- Normalization algorithms: transform to normal form

Roadmap

- Normal forms: desirable formal schema properties
- Normalization algorithms: transform to normal form

Functional Dependency (FD)

- Used to detect data redundancies (want to remove)
- Values in some columns uniquely decide values in others
- Notation: $X \rightarrow Y$ means values in X decide values in Y

Example Dependencies

TA Name	Hours	Salary	
John	Full Time	1,000	
Mike	Part Time	500	
Anna	Part Time	500	
Lisa	Full Time	1,000	

Example Dependencies

TA Name	Hours	Salary
John	Full Time	1,000
Mike	the find the second sec	500 500
Anna	Part Time	500
Lisa	Full Time	1,000

Problems

- Update anomaly: could make TA salaries inconsistent
- Insertion anomaly: could lack salary info for new hours
- **Deletion anomaly:** could lose salary info after deletions

Example Solution

TA Name	Hours
John	Full Time
Mike	Part Time
Anna	Part Time
Lisa	Full Time

Hours	Salary
Full Time	1,000
Part Time	500

Solution Analysis

- We removed redundancy by **decomposing** table
 - FD does not connect columns in same table
 - Prior anomalies cannot happen anymore
- Must avoid data loss via decomposition
 - Can **reconstruct** based on FD (Hours \rightarrow Salary)
 - Recompose by looking up Salary for Hours value
- Decomposing table may require additional joins!

Functional Dependencies and Redundancy

- FDs state that values in X determine values in Y
- **Redundant** storage of Y if X stored multiple times
 - Sufficient to store Y once for each X value
- Want to design schema to avoid this in each case
 - Considering all possible future database states
- Want to avoid storing X and Y in same table, except ...

When To Allow All FD Columns in Same Table?

Finding FDs

- Common mistake: try finding FDs by looking at data
- Data only captures current state of the database
 - Not all functional dependencies may appear
 - Data may suggest misleading "pseudo FDs"
- Two valid **sources** for mining FDs:
 - Domain knowledge
 - Inferring new FDs from given FDs

Inferring FDs

- Notation F1 = F2 means FDs F1 imply FDs F2
 - No relation can satisfy F1 without satisfying F2
- Can infer all FDs by applying **Armstrong's Axioms**:
 - **Reflexivity**: if $Y \subseteq X$ then $X \rightarrow Y$ is implied
 - Augmentation: if $X \rightarrow Y$ then $XZ \rightarrow YZ$ for any Z
 - **Transitivity**: if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

FD Closure

- **Closure** of a set of FDs are all implied FDs
- $F+ = \{f|F|=f\}$
- Can be calculated using Armstrong's axioms
- F is a **cover** for G if F + = G +
- The closure can be **extremely large**

Example: Inferring FDs

```
    F={
        {Course} → {Lecturer},
        {Course} → {Department},
        {Lecturer, Department} → {Office}
    }
    }
```

- FDs **inferred** from F:
 - {Course, Department} \rightarrow {Department}
 - {Course, Lecturer} → {Department, Lecturer}
 - $\{Course\} \rightarrow \{Office\}$

Example: Inferring FDs

```
    F={
        {Course} → {Lecturer},
        {Course} → {Department},
        {Lecturer, Department} → {Office}
    }
    }
```

- FDs **inferred** from F:
 - {Course, Department} → {Department}
 - {Course, Lecturer} → {Department, Lecturer}

Details on Inference

Given

Inferred

- 1. {Course} \rightarrow {Lecturer}
- 2. {Course} \rightarrow {Department}
- 3. {Lecturer, Department} \rightarrow {Office}
- 4. {Course} \rightarrow {Course, Lecturer}
- 5. {Course, Lecturer} \rightarrow {Lecturer, Department}
- 6. {Course} \rightarrow {Lecturer, Department}
- 7. {Course} \rightarrow {Office}

Attribute Closure

- Entire closure is typically too large to be useful
- Attribute closure gets all FDs for fixed left attributes
 - X+ for attributes X is attribute closure
- Useful for checking if one **specific** FD is implied

Finding Attribute Closures

- Goal: get attribute closure of X given FDs F
- Repeat until no changes
 - Start with **closure X**
 - **Iterate** over all FDs $A \rightarrow B$ in F
 - If closure ⊆ A then add B to closure

Example: Attribute Closures

• $F = \{A \rightarrow D, AB \rightarrow E, BI \rightarrow E, CD \rightarrow I, E \rightarrow C\}$

- Want to find attribute closure (AE)+
- Before Iteration 1: closure is (AE)
- Before Iteration 2: closure is (ACDE)
- Before Iteration 3: closure is (ACDEI)
- (No change in Iteration 3)

- Goal: get attribute closure of X given FDs F
- **Repeat** until no changes
 - Start with closure X
 - **Iterate** over all FDs $A \rightarrow B$ in F
 - If closure ⊆ A then add B to closure

- Goal: get attribute closure of X given FDs F
- Repeat until no changes
 - Start with closure X
 - **Iterate** over all FDs $A \rightarrow B$ in F

If closure ⊆ A then add B to closure

O(Nr. Attributes)

- Goal: get attribute closure of X given FDs F
- Repeat until no changes
 - Start with closure X

• Goal: get attribute closure of X given FDs F

Repeat until no changes

• Start with **closure X**

Iterate over all FDs A → B in F
 O(Nr. FDs) Iterations
 If closure ⊆ A then add B to closure
 O(Nr. Attributes)

O(Nr. FDs) Iterations

• Goal: get attribute closure of X given FDs F

Repeat until no changes

• Start with closure X

• Iterate over all FDs $A \rightarrow B$ in F O(Nr.

O(Nr. FDs) Iterations

O(Nr. FDs) Iterations

If closure ⊆ A then add B to closure

O(Nr. Attributes)

Complexity in O(Nr. FDs² * Nr. Attributes)

Finding All Relation Keys

- Iterate over all attribute sets A
 - Check if A is a key:
 - Calculate attribute closure (A)+
 - It's a **key** if (A)+ includes all attributes

Roadmap

• Functional dependencies: indicate redundancy

Normal forms: desirable formal schema properties

Normalization algorithms: transform to normal form

Boyce-Codd Normal Form (BCNF)

- A schema if in **BCNF** if the following conditions holds
 - For all FDs $A \rightarrow b$ whose attributes are in same table
 - Either b is element in A ("trivial" FD)
 - Or A contains a key of its associated table
 - This must apply to given and inferred FDs!

Does not permit any redundancy!

BCNF Example

- For all FDs $A \rightarrow b$ with attributes in same table
 - Either b is element in A ("trivial" FD)
 - Or A contains a key of its associated table
- Is this schema in BCNF?
 - Schema: table₁(a,b), table₂(a,d,e), table₃(c,d)
 - (Initial) FDs: $\{a \rightarrow b, bc \rightarrow d, a \rightarrow c, d \rightarrow ae\}$

Third Normal Form (3NF)

- A schema if in **3NF** if the following conditions holds
 - For all FDs $A \rightarrow b$ whose attributes are in same table
 - Either b is element in A ("trivial" FD)
 - Or A contains a key of its associated table
 - Or b is part of some minimal key
 - This must apply to given and inferred FDs!

Third Normal Form (3NF)

- A schema if in **3NF** if the following conditions holds
 - For all FDs $A \rightarrow b$ whose attributes are in same table
 - Either b is element in A ("trivial" FD)
 - Or A contains a key of its associated table
 - Or b is part of some minimal key

Allows Some Redundancy

• This must apply to given and inferred FDs!

3NF Example

- For all FDs $A \rightarrow b$ with attributes in same table
 - Either b is element in A ("trivial" FD)
 - Or A contains a key of its associated table
 - Or b is part of some minimal key
- Is this schema in 3NF?
 - **Schema**: table₁(a,b), table₂(a,d,e), table₃(c,d)
 - (Initial) FDs: $\{a \rightarrow b, bc \rightarrow d, a \rightarrow c, d \rightarrow ae\}$

Comparison of Normal Forms

- **BCNF** disallows any redundancy
 - Pro: avoids all negative effects of redundancy
 - Con: may require breaking up dependencies
- **3NF** allows redundancy in some cases
 - **Pro:** can always preserve dependencies
 - Con: may still have some negative effects

Comparison of Normal Forms

- **BCNF** disallows any redundancy
 - Pro: avoids all negative effects of redundancy
 - Con: may require breaking up dependencies
- **3NF** allows redundancy in some cases

I.e., verifying FDs may require joins

- **Pro:** can always preserve dependencies
- Con: may still have some negative effects

Roadmap

- Functional dependencies: indicate redundancy
- Normal forms: desirable formal schema properties

Normalization algorithms: transform to normal form

Slides by Immanuel Trummer, Cornell University

Decomposition

- Normal forms impose conditions on FDs in single table
- **Decompose** tables into smaller tables to satisfy them
- Decomposition must allow to reconstruct original data
 - Assume we decomposed **R** into **X** and **Y**
 - We can do so if $X \cap Y \rightarrow X$ or $X \cap Y \rightarrow Y$ is an FD
 - Can then match each row from Y to one row from X/ Can then match each row from X to one row from Y

Lossless Decomposition

TA Name	Hours	Office
John	Full Time	401b
Mike	Part Time	205
Anna	Part Time	310
Lisa	Full Time	112

Hours	Salary
Full Time	1,000
Part Time	500

Slides by Immanuel Trummer, Cornell University

Lossless Recomposition

TA Name	Hours	Salary	Office
John	Full Time	1,000	401b
Mike	Part Time	500	205
Anna	Part Time	500	310
Lisa	Full Time	1,000	112

Lossy Decomposition

TA Name	Hours	Hours	Salary	Office
John	Full Time	Full Time	1,000	401b
Mike	Part Time	Part Time	500	205
Anna	Part Time	Part Time	500	310
Lisa	Full Time	Full Time	1,000	112

Lossy Recomposition

TA Name	Hours	Salary	Office
John	Full Time	1,000	401b
Mike	Part Time	500	205
Anna	Part Time	500	310
Lisa	Full Time	1,000	112
John	Full Time	1,000	112
Mike	Part Time	500	310
Anna	Part Time	500	205
Lisa	Full Time	1,000	401b

Towards BCNF

- Repeat while some FD A→b on R violates BCNF rules
 - **Decompose** R into R-b and Ab
- All decompositions are lossless as (R-b)∩Ab=A→b
- Will terminate as tables get smaller and smaller
- End result may **depend** on decomposition order

BCNF Example

- CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
- Bring this into BCNF!

BCNF (One) Solution

- CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
- For SD→P, **decompose** into SDP, CSJDQV
- For J→S, **decomposes** CSJDQV into JS, CJDQV
- Final database schema: SDP, JS, CJDQV

Dependency Preservation

- Assume we **decompose** R into X and Y
- Assume we enforce FDs on X and Y separately
 - I.e., we enforce all FDs that only use attributes on X
 - Then we enforce all FDs that only use attributes on Y
- This enforces all FDs on R if **dependency preserving**

Decomposition Properties

- Reminder: lossless vs. dependency preserving
- None of the two properties implies the other!
- **BCNF** may lose dependency preservation
- **3NF** fixes that

Towards 3NF

- Same procedure as for BCNF with one extension
 - If dependency $A \rightarrow b$ broken then add relation Ab
 - Want to use **minimal cover** FDs for this!
 - Right hand side of each FD is a single attribute
 - Closure changes when deleting any FD
 - Closure changes when **deleting any attribute**

DB Design Example

Draw ER diagram

- We design the database for a Web shop, described below
- Accounts have a (unique) name, a password, and a timestamp of the last login.
- **Customers** own at most one account, they have a customer ID (unique), a name, and one or multiple addresses.
- Each address has an address ID, a street name and number, and an associated country.
- Employees have an employee ID (unique), a name, one primary address, and at least one assigned account to supervise. They are associated with a job title, the number of hours worked weekly, and salary.

Translate into Schema!

DB Schema - First Draft

- CustomerWaccount(Cid,CName,Aname, Timestamp,Password)
- **Employee**(EmplD,Name,Job,Hours,Salary,AID)
- **Supervises**(EmpID,Cid)
- Address(<u>AID</u>,StreetN,StreetNr,Country)
- CustomerHasAddress(Cid,AID)

Bring to BCNF

Normalized Schema

- Functional **dependencies**:
 - Key and trivial constraints (allowed by BCNF)
 - Job, Hours \rightarrow Salary (needs to be resolved!)
- **Decompose** Employee table:
 - From Employee(EmpID,Name,Job,Hours,Salary,AID)
 - Into Employee(EmplD,Name,Job,Hours,AID), JobHoursToSalary(Job,Hours,Salary)