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Database Design Process
• Requirement analysis 

• Based on use cases, business process descriptions


• Conceptual design 

• Model what the DB is about, e.g. via ER diagrams


• Schema normalization 

• E.g., reduce data redundancy via transformation


• Physical tuning 

• E.g., decide which indices to create or sort order
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Database Design Process
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• E.g., decide which indices to create or sort order
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Schema Normalization

• Can prepare first sketch of database schema via ER


• Resulting schema will most likely be sub-optimal


• I.e., the schema implies lots of data redundancy 

• Data redundancy leads to various problems


• Optimize initial schema via schema normalization



Slides by Immanuel Trummer, Cornell University

Roadmap

• Functional dependencies: indicate redundancy


• Normal forms: desirable formal schema properties


• Normalization algorithms: transform to normal form
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Functional Dependency 
(FD)

• Used to detect data redundancies (want to remove)


• Values in some columns uniquely decide values in others


• Notation: X → Y means values in X decide values in Y
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Example Dependencies
TA Name Hours Salary

John Full Time 1,000

Mike Part Time 500

Anna Part Time 500

Lisa Full Time 1,000

Hours → Salary
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Example Dependencies
TA Name Hours Salary

John Full Time 1,000

Mike Part Time 500

Anna Part Time 500

Lisa Full Time 1,000

Hours → Salary

What's the Problem?
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Problems

• Update anomaly: could make TA salaries inconsistent


• Insertion anomaly: could lack salary info for new hours


• Deletion anomaly: could lose salary info after deletions
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Example Solution
TA Name Hours

John Full Time

Mike Part Time

Anna Part Time

Lisa Full Time

Hours → Salary

Hours Salary

Full Time 1,000

Part Time 500
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Solution Analysis
• We removed redundancy by decomposing table


• FD does not connect columns in same table


• Prior anomalies cannot happen anymore


• Must avoid data loss via decomposition


• Can reconstruct based on FD (Hours → Salary)


• Recompose by looking up Salary for Hours value


• Decomposing table may require additional joins!
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Functional Dependencies 
and Redundancy

• FDs state that values in X determine values in Y


• Redundant storage of Y if X stored multiple times


• Sufficient to store Y once for each X value


• Want to design schema to avoid this in each case


• Considering all possible future database states


• Want to avoid storing X and Y in same table, except ...
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When To Allow All FD 
Columns in Same Table?



Slides by Immanuel Trummer, Cornell University

Finding FDs
• Common mistake: try finding FDs by looking at data 

• Data only captures current state of the database


• Not all functional dependencies may appear


• Data may suggest misleading "pseudo FDs"


• Two valid sources for mining FDs:


• Domain knowledge 

• Inferring new FDs from given FDs
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Inferring FDs
• Notation F1 |= F2 means FDs F1 imply FDs F2


• No relation can satisfy F1 without satisfying F2


• Can infer all FDs by applying Armstrong's Axioms:


• Reflexivity: if Y ⊆ X then X → Y is implied


• Augmentation: if X → Y then XZ → YZ for any Z


• Transitivity: if X → Y and Y → Z then X → Z



Slides by Immanuel Trummer, Cornell University

FD Closure

• Closure of a set of FDs are all implied FDs


• F+ = {f|F |= f}


• Can be calculated using Armstrong's axioms


• F is a cover for G if F+ = G+


• The closure can be extremely large
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Example: Inferring FDs
• F={ 

  {Course} → {Lecturer},  
  {Course} → {Department},  
  {Lecturer, Department} → {Office} 
}


• FDs inferred from F:


• {Course, Department} → {Department}


• {Course, Lecturer} → {Department, Lecturer}


• {Course} → {Office}
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Details on Inference
1. {Course} → {Lecturer}


2. {Course} → {Department}


3. {Lecturer, Department} → {Office}


4. {Course} → {Course, Lecturer}


5. {Course, Lecturer} → {Lecturer, Department}


6. {Course} → {Lecturer, Department}


7. {Course} → {Office}

Given
Inferred
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Attribute Closure

• Entire closure is typically too large to be useful


• Attribute closure gets all FDs for fixed left attributes


• X+ for attributes X is attribute closure


• Useful for checking if one specific FD is implied
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Finding Attribute Closures

• Goal: get attribute closure of X given FDs F


• Repeat until no changes


• Start with closure X


• Iterate over all FDs A → B in F


• If closure ⊆ A then add B to closure
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Example: Attribute Closures

• F = {A → D, AB → E, BI → E, CD → I, E → C} 

• Want to find attribute closure (AE)+


• Before Iteration 1: closure is (AE)


• Before Iteration 2: closure is (ACDE)


• Before Iteration 3: closure is (ACDEI)


• (No change in Iteration 3)
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Attribute Closure 
Complexity

• Goal: get attribute closure of X given FDs F


• Repeat until no changes


• Start with closure X


• Iterate over all FDs A → B in F


• If closure ⊆ A then add B to closure
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Attribute Closure 
Complexity

• Goal: get attribute closure of X given FDs F


• Repeat until no changes


• Start with closure X


• Iterate over all FDs A → B in F


• If closure ⊆ A then add B to closure O(Nr. Attributes)
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Attribute Closure 
Complexity

• Goal: get attribute closure of X given FDs F


• Repeat until no changes


• Start with closure X


• Iterate over all FDs A → B in F


• If closure ⊆ A then add B to closure O(Nr. Attributes)

O(Nr. FDs) Iterations
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Attribute Closure 
Complexity

• Goal: get attribute closure of X given FDs F


• Repeat until no changes


• Start with closure X


• Iterate over all FDs A → B in F


• If closure ⊆ A then add B to closure O(Nr. Attributes)

O(Nr. FDs) Iterations
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Attribute Closure 
Complexity

• Goal: get attribute closure of X given FDs F


• Repeat until no changes


• Start with closure X


• Iterate over all FDs A → B in F


• If closure ⊆ A then add B to closure O(Nr. Attributes)

O(Nr. FDs) Iterations

O(Nr. FDs) Iterations

Complexity in O(Nr. FDs2 * Nr. Attributes)
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Finding All Relation Keys

• Iterate over all attribute sets A


• Check if A is a key:


• Calculate attribute closure (A)+


• It's a key if (A)+ includes all attributes
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Roadmap

• Functional dependencies: indicate redundancy


• Normal forms: desirable formal schema properties


• Normalization algorithms: transform to normal form
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Boyce-Codd Normal Form 
(BCNF)

• A schema if in BCNF if the following conditions holds


• For all FDs A → b whose attributes are in same table


• Either b is element in A ("trivial" FD)


• Or A contains a key of its associated table


• This must apply to given and inferred FDs!

Does not permit any redundancy!
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BCNF Example
• For all FDs A → b with attributes in same table


• Either b is element in A ("trivial" FD)


• Or A contains a key of its associated table


• Is this schema in BCNF? 

• Schema: table1(a,b), table2(a,d,e), table3(c,d)


• (Initial) FDs: {a → b, bc → d, a → c, d → ae}
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Third Normal Form (3NF)
• A schema if in 3NF if the following conditions holds


• For all FDs A → b whose attributes are in same table


• Either b is element in A ("trivial" FD)


• Or A contains a key of its associated table


• Or b is part of some minimal key


• This must apply to given and inferred FDs!
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Third Normal Form (3NF)
• A schema if in 3NF if the following conditions holds


• For all FDs A → b whose attributes are in same table


• Either b is element in A ("trivial" FD)


• Or A contains a key of its associated table


• Or b is part of some minimal key


• This must apply to given and inferred FDs!

Allows Some  
Redundancy
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3NF Example
• For all FDs A → b with attributes in same table


• Either b is element in A ("trivial" FD)


• Or A contains a key of its associated table


• Or b is part of some minimal key


• Is this schema in 3NF? 

• Schema: table1(a,b), table2(a,d,e), table3(c,d)


• (Initial) FDs: {a → b, bc → d, a → c, d → ae}
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Comparison of  
Normal Forms

• BCNF disallows any redundancy


• Pro: avoids all negative effects of redundancy


• Con: may require breaking up dependencies


• 3NF allows redundancy in some cases


• Pro: can always preserve dependencies


• Con: may still have some negative effects
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Comparison of  
Normal Forms

• BCNF disallows any redundancy


• Pro: avoids all negative effects of redundancy


• Con: may require breaking up dependencies


• 3NF allows redundancy in some cases


• Pro: can always preserve dependencies


• Con: may still have some negative effects

I.e., verifying FDs  
may require joins
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Roadmap

• Functional dependencies: indicate redundancy


• Normal forms: desirable formal schema properties


• Normalization algorithms: transform to normal form
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Decomposition
• Normal forms impose conditions on FDs in single table


• Decompose tables into smaller tables to satisfy them


• Decomposition must allow to reconstruct original data


• Assume we decomposed R into X and Y


• We can do so if X⋂Y→X or X⋂Y→Y is an FD


• Can then match each row from Y to one row from X/
Can then match each row from X to one row from Y
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Lossless Decomposition
TA 

Name Hours Office

John Full 
Time 401b

Mike Part 
Time 205

Anna Part 
Time 310

Lisa Full 
Time 112

Hours → Salary

Hours Salary

Full Time 1,000

Part Time 500
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Lossless Recomposition
TA Name Hours Salary Office

John Full Time 1,000 401b

Mike Part Time 500 205

Anna Part Time 500 310

Lisa Full Time 1,000 112

Hours → Salary
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Lossy Decomposition
TA Name Hours

John Full Time

Mike Part Time

Anna Part Time

Lisa Full Time

Hours → Salary

Hours Salary Office

Full 
Time 1,000 401b

Part 
Time 500 205

Part 
Time 500 310

Full 
Time 1,000 112
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Lossy Recomposition
TA Name Hours Salary Office

John Full Time 1,000 401b

Mike Part Time 500 205

Anna Part Time 500 310

Lisa Full Time 1,000 112

John Full Time 1,000 112

Mike Part Time 500 310

Anna Part Time 500 205

Lisa Full Time 1,000 401b

Hours → Salary
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Towards BCNF

• Repeat while some FD A→b on R violates BCNF rules


• Decompose R into R-b and Ab


• All decompositions are lossless as (R-b)⋂Ab=A→b


• Will terminate as tables get smaller and smaller


• End result may depend on decomposition order
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BCNF Example

• CSJDPQV, key C, JP→C, SD→P, J→S


• Bring this into BCNF!
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BCNF (One) Solution

• CSJDPQV, key C, JP→C, SD→P, J→S


• For SD→P, decompose into SDP, CSJDQV


• For J→S, decomposes CSJDQV into JS, CJDQV


• Final database schema: SDP, JS, CJDQV
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Dependency Preservation

• Assume we decompose R into X and Y


• Assume we enforce FDs on X and Y separately


• I.e., we enforce all FDs that only use attributes on X


• Then we enforce all FDs that only use attributes on Y


• This enforces all FDs on R if dependency preserving
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Decomposition Properties

• Reminder: lossless vs. dependency preserving


• None of the two properties implies the other!


• BCNF may lose dependency preservation


• 3NF fixes that
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Towards 3NF
• Same procedure as for BCNF with one extension


• If dependency A→b broken then add relation Ab


• Want to use minimal cover FDs for this!


• Right hand side of each FD is a single attribute


• Closure changes when deleting any FD


• Closure changes when deleting any attribute
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DB Design Example
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Draw ER diagram
• We design the database for a Web shop, described below


• Accounts have a (unique) name, a password, and a timestamp of the 
last login.


• Customers own at most one account, they have a customer ID (unique), 
a name, and one or multiple addresses.


• Each address has an address ID, a street name and number, and an 
associated country.


• Employees have an employee ID (unique), a name, one primary address, 
and at least one assigned account to supervise. They are associated with 
a job title, the number of hours worked weekly, and salary.
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ER Diagram

Account

Customer

OwnsAName

Password

Timestamp

Cid

CName Address

StreetN

StreetNr

Country

Has

Employee

Has

EmpID

Name

Superv.

Job

Hours Salary

AID
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Translate into 
Schema!
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DB Schema - First Draft

• CustomerWaccount(Cid,CName,Aname, 
  Timestamp,Password)


• Employee(EmpID,Name,Job,Hours,Salary,AID)


• Supervises(EmpID,Cid)


• Address(AID,StreetN,StreetNr,Country)


• CustomerHasAddress(Cid,AID)
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Bring to BCNF
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Normalized Schema
• Functional dependencies:


• Key and trivial constraints (allowed by BCNF)


• Job, Hours → Salary (needs to be resolved!)


• Decompose Employee table:


• From Employee(EmpID,Name,Job,Hours,Salary,AID)


• Into Employee(EmpID,Name,Job,Hours,AID), 
JobHoursToSalary(Job,Hours,Salary)


