
Database
Normalization

Immanuel Trummer 
itrummer@cornell.edu

www.itrummer.org

Slides by Immanuel Trummer, Cornell University

Database Design Process
• Requirement analysis

• Based on use cases, business process descriptions

• Conceptual design

• Model what the DB is about, e.g. via ER diagrams

• Schema normalization

• E.g., reduce data redundancy via transformation

• Physical tuning

• E.g., decide which indices to create or sort order

Slides by Immanuel Trummer, Cornell University

Database Design Process
• Requirement analysis

• Based on use cases, business process descriptions

• Conceptual design

• Model what the DB is about, e.g. via ER diagrams

• Schema normalization

• E.g., reduce data redundancy via transformation

• Physical tuning

• E.g., decide which indices to create or sort order

Slides by Immanuel Trummer, Cornell University

Database Design Process
• Requirement analysis

• Based on use cases, business process descriptions

• Conceptual design

• Model what the DB is about, e.g. via ER diagrams

• Schema normalization

• E.g., reduce data redundancy via transformation

• Physical tuning

• E.g., decide which indices to create or sort order

[RG Sec.15]

Slides by Immanuel Trummer, Cornell University

Schema Normalization

• Can prepare first sketch of database schema via ER

• Resulting schema will most likely be sub-optimal

• I.e., the schema implies lots of data redundancy

• Data redundancy leads to various problems

• Optimize initial schema via schema normalization

Slides by Immanuel Trummer, Cornell University

Roadmap

• Functional dependencies: indicate redundancy

• Normal forms: desirable formal schema properties

• Normalization algorithms: transform to normal form

Slides by Immanuel Trummer, Cornell University

Roadmap

• Functional dependencies: indicate redundancy

• Normal forms: desirable formal schema properties

• Normalization algorithms: transform to normal form

Slides by Immanuel Trummer, Cornell University

Functional Dependency
(FD)

• Used to detect data redundancies (want to remove)

• Values in some columns uniquely decide values in others

• Notation: X → Y means values in X decide values in Y

Slides by Immanuel Trummer, Cornell University

Example Dependencies
TA Name Hours Salary

John Full Time 1,000

Mike Part Time 500

Anna Part Time 500

Lisa Full Time 1,000

Hours → Salary

Slides by Immanuel Trummer, Cornell University

Example Dependencies
TA Name Hours Salary

John Full Time 1,000

Mike Part Time 500

Anna Part Time 500

Lisa Full Time 1,000

Hours → Salary

What's the Problem?

Slides by Immanuel Trummer, Cornell University

Problems

• Update anomaly: could make TA salaries inconsistent

• Insertion anomaly: could lack salary info for new hours

• Deletion anomaly: could lose salary info after deletions

Slides by Immanuel Trummer, Cornell University

Example Solution
TA Name Hours

John Full Time

Mike Part Time

Anna Part Time

Lisa Full Time

Hours → Salary

Hours Salary

Full Time 1,000

Part Time 500

Slides by Immanuel Trummer, Cornell University

Solution Analysis
• We removed redundancy by decomposing table

• FD does not connect columns in same table

• Prior anomalies cannot happen anymore

• Must avoid data loss via decomposition

• Can reconstruct based on FD (Hours → Salary)

• Recompose by looking up Salary for Hours value

• Decomposing table may require additional joins!

Slides by Immanuel Trummer, Cornell University

Functional Dependencies
and Redundancy

• FDs state that values in X determine values in Y

• Redundant storage of Y if X stored multiple times

• Sufficient to store Y once for each X value

• Want to design schema to avoid this in each case

• Considering all possible future database states

• Want to avoid storing X and Y in same table, except ...

Slides by Immanuel Trummer, Cornell University

When To Allow All FD
Columns in Same Table?

Slides by Immanuel Trummer, Cornell University

Finding FDs
• Common mistake: try finding FDs by looking at data

• Data only captures current state of the database

• Not all functional dependencies may appear

• Data may suggest misleading "pseudo FDs"

• Two valid sources for mining FDs:

• Domain knowledge

• Inferring new FDs from given FDs

Slides by Immanuel Trummer, Cornell University

Inferring FDs
• Notation F1 |= F2 means FDs F1 imply FDs F2

• No relation can satisfy F1 without satisfying F2

• Can infer all FDs by applying Armstrong's Axioms:

• Reflexivity: if Y ⊆ X then X → Y is implied

• Augmentation: if X → Y then XZ → YZ for any Z

• Transitivity: if X → Y and Y → Z then X → Z

Slides by Immanuel Trummer, Cornell University

FD Closure

• Closure of a set of FDs are all implied FDs

• F+ = {f|F |= f}

• Can be calculated using Armstrong's axioms

• F is a cover for G if F+ = G+

• The closure can be extremely large

Slides by Immanuel Trummer, Cornell University

Example: Inferring FDs
• F={ 

 {Course} → {Lecturer},  
 {Course} → {Department},  
 {Lecturer, Department} → {Office} 
}

• FDs inferred from F:

• {Course, Department} → {Department}

• {Course, Lecturer} → {Department, Lecturer}

• {Course} → {Office}

Slides by Immanuel Trummer, Cornell University

Example: Inferring FDs
• F={ 

 {Course} → {Lecturer},  
 {Course} → {Department},  
 {Lecturer, Department} → {Office} 
}

• FDs inferred from F:

• {Course, Department} → {Department}

• {Course, Lecturer} → {Department, Lecturer}

• {Course} → {Office}

Slides by Immanuel Trummer, Cornell University

Details on Inference
1. {Course} → {Lecturer}

2. {Course} → {Department}

3. {Lecturer, Department} → {Office}

4. {Course} → {Course, Lecturer}

5. {Course, Lecturer} → {Lecturer, Department}

6. {Course} → {Lecturer, Department}

7. {Course} → {Office}

Given
Inferred

Slides by Immanuel Trummer, Cornell University

Attribute Closure

• Entire closure is typically too large to be useful

• Attribute closure gets all FDs for fixed left attributes

• X+ for attributes X is attribute closure

• Useful for checking if one specific FD is implied

Slides by Immanuel Trummer, Cornell University

Finding Attribute Closures

• Goal: get attribute closure of X given FDs F

• Repeat until no changes

• Start with closure X

• Iterate over all FDs A → B in F

• If closure ⊆ A then add B to closure

Slides by Immanuel Trummer, Cornell University

Example: Attribute Closures

• F = {A → D, AB → E, BI → E, CD → I, E → C}

• Want to find attribute closure (AE)+

• Before Iteration 1: closure is (AE)

• Before Iteration 2: closure is (ACDE)

• Before Iteration 3: closure is (ACDEI)

• (No change in Iteration 3)

Slides by Immanuel Trummer, Cornell University

Attribute Closure
Complexity

• Goal: get attribute closure of X given FDs F

• Repeat until no changes

• Start with closure X

• Iterate over all FDs A → B in F

• If closure ⊆ A then add B to closure

Slides by Immanuel Trummer, Cornell University

Attribute Closure
Complexity

• Goal: get attribute closure of X given FDs F

• Repeat until no changes

• Start with closure X

• Iterate over all FDs A → B in F

• If closure ⊆ A then add B to closure O(Nr. Attributes)

Slides by Immanuel Trummer, Cornell University

Attribute Closure
Complexity

• Goal: get attribute closure of X given FDs F

• Repeat until no changes

• Start with closure X

• Iterate over all FDs A → B in F

• If closure ⊆ A then add B to closure O(Nr. Attributes)

O(Nr. FDs) Iterations

Slides by Immanuel Trummer, Cornell University

Attribute Closure
Complexity

• Goal: get attribute closure of X given FDs F

• Repeat until no changes

• Start with closure X

• Iterate over all FDs A → B in F

• If closure ⊆ A then add B to closure O(Nr. Attributes)

O(Nr. FDs) Iterations

O(Nr. FDs) Iterations

Slides by Immanuel Trummer, Cornell University

Attribute Closure
Complexity

• Goal: get attribute closure of X given FDs F

• Repeat until no changes

• Start with closure X

• Iterate over all FDs A → B in F

• If closure ⊆ A then add B to closure O(Nr. Attributes)

O(Nr. FDs) Iterations

O(Nr. FDs) Iterations

Complexity in O(Nr. FDs2 * Nr. Attributes)

Slides by Immanuel Trummer, Cornell University

Finding All Relation Keys

• Iterate over all attribute sets A

• Check if A is a key:

• Calculate attribute closure (A)+

• It's a key if (A)+ includes all attributes

Slides by Immanuel Trummer, Cornell University

Roadmap

• Functional dependencies: indicate redundancy

• Normal forms: desirable formal schema properties

• Normalization algorithms: transform to normal form

Slides by Immanuel Trummer, Cornell University

Boyce-Codd Normal Form
(BCNF)

• A schema if in BCNF if the following conditions holds

• For all FDs A → b whose attributes are in same table

• Either b is element in A ("trivial" FD)

• Or A contains a key of its associated table

• This must apply to given and inferred FDs!

Does not permit any redundancy!

Slides by Immanuel Trummer, Cornell University

BCNF Example
• For all FDs A → b with attributes in same table

• Either b is element in A ("trivial" FD)

• Or A contains a key of its associated table

• Is this schema in BCNF?

• Schema: table1(a,b), table2(a,d,e), table3(c,d)

• (Initial) FDs: {a → b, bc → d, a → c, d → ae}

Slides by Immanuel Trummer, Cornell University

Third Normal Form (3NF)
• A schema if in 3NF if the following conditions holds

• For all FDs A → b whose attributes are in same table

• Either b is element in A ("trivial" FD)

• Or A contains a key of its associated table

• Or b is part of some minimal key

• This must apply to given and inferred FDs!

Slides by Immanuel Trummer, Cornell University

Third Normal Form (3NF)
• A schema if in 3NF if the following conditions holds

• For all FDs A → b whose attributes are in same table

• Either b is element in A ("trivial" FD)

• Or A contains a key of its associated table

• Or b is part of some minimal key

• This must apply to given and inferred FDs!

Allows Some
Redundancy

Slides by Immanuel Trummer, Cornell University

3NF Example
• For all FDs A → b with attributes in same table

• Either b is element in A ("trivial" FD)

• Or A contains a key of its associated table

• Or b is part of some minimal key

• Is this schema in 3NF?

• Schema: table1(a,b), table2(a,d,e), table3(c,d)

• (Initial) FDs: {a → b, bc → d, a → c, d → ae}

Slides by Immanuel Trummer, Cornell University

Comparison of  
Normal Forms

• BCNF disallows any redundancy

• Pro: avoids all negative effects of redundancy

• Con: may require breaking up dependencies

• 3NF allows redundancy in some cases

• Pro: can always preserve dependencies

• Con: may still have some negative effects

Slides by Immanuel Trummer, Cornell University

Comparison of  
Normal Forms

• BCNF disallows any redundancy

• Pro: avoids all negative effects of redundancy

• Con: may require breaking up dependencies

• 3NF allows redundancy in some cases

• Pro: can always preserve dependencies

• Con: may still have some negative effects

I.e., verifying FDs  
may require joins

Slides by Immanuel Trummer, Cornell University

Roadmap

• Functional dependencies: indicate redundancy

• Normal forms: desirable formal schema properties

• Normalization algorithms: transform to normal form

Slides by Immanuel Trummer, Cornell University

Decomposition
• Normal forms impose conditions on FDs in single table

• Decompose tables into smaller tables to satisfy them

• Decomposition must allow to reconstruct original data

• Assume we decomposed R into X and Y

• We can do so if X⋂Y→X or X⋂Y→Y is an FD

• Can then match each row from Y to one row from X/
Can then match each row from X to one row from Y

Slides by Immanuel Trummer, Cornell University

Lossless Decomposition
TA

Name Hours Office

John Full
Time 401b

Mike Part
Time 205

Anna Part
Time 310

Lisa Full
Time 112

Hours → Salary

Hours Salary

Full Time 1,000

Part Time 500

Slides by Immanuel Trummer, Cornell University

Lossless Recomposition
TA Name Hours Salary Office

John Full Time 1,000 401b

Mike Part Time 500 205

Anna Part Time 500 310

Lisa Full Time 1,000 112

Hours → Salary

Slides by Immanuel Trummer, Cornell University

Lossy Decomposition
TA Name Hours

John Full Time

Mike Part Time

Anna Part Time

Lisa Full Time

Hours → Salary

Hours Salary Office

Full
Time 1,000 401b

Part
Time 500 205

Part
Time 500 310

Full
Time 1,000 112

Slides by Immanuel Trummer, Cornell University

Lossy Recomposition
TA Name Hours Salary Office

John Full Time 1,000 401b

Mike Part Time 500 205

Anna Part Time 500 310

Lisa Full Time 1,000 112

John Full Time 1,000 112

Mike Part Time 500 310

Anna Part Time 500 205

Lisa Full Time 1,000 401b

Hours → Salary

Slides by Immanuel Trummer, Cornell University

Towards BCNF

• Repeat while some FD A→b on R violates BCNF rules

• Decompose R into R-b and Ab

• All decompositions are lossless as (R-b)⋂Ab=A→b

• Will terminate as tables get smaller and smaller

• End result may depend on decomposition order

Slides by Immanuel Trummer, Cornell University

BCNF Example

• CSJDPQV, key C, JP→C, SD→P, J→S

• Bring this into BCNF!

Slides by Immanuel Trummer, Cornell University

BCNF (One) Solution

• CSJDPQV, key C, JP→C, SD→P, J→S

• For SD→P, decompose into SDP, CSJDQV

• For J→S, decomposes CSJDQV into JS, CJDQV

• Final database schema: SDP, JS, CJDQV

Slides by Immanuel Trummer, Cornell University

Dependency Preservation

• Assume we decompose R into X and Y

• Assume we enforce FDs on X and Y separately

• I.e., we enforce all FDs that only use attributes on X

• Then we enforce all FDs that only use attributes on Y

• This enforces all FDs on R if dependency preserving

Slides by Immanuel Trummer, Cornell University

Decomposition Properties

• Reminder: lossless vs. dependency preserving

• None of the two properties implies the other!

• BCNF may lose dependency preservation

• 3NF fixes that

Slides by Immanuel Trummer, Cornell University

Towards 3NF
• Same procedure as for BCNF with one extension

• If dependency A→b broken then add relation Ab

• Want to use minimal cover FDs for this!

• Right hand side of each FD is a single attribute

• Closure changes when deleting any FD

• Closure changes when deleting any attribute

Slides by Immanuel Trummer, Cornell University

DB Design Example

Slides by Immanuel Trummer, Cornell University

Draw ER diagram
• We design the database for a Web shop, described below

• Accounts have a (unique) name, a password, and a timestamp of the
last login.

• Customers own at most one account, they have a customer ID (unique),
a name, and one or multiple addresses.

• Each address has an address ID, a street name and number, and an
associated country.

• Employees have an employee ID (unique), a name, one primary address,
and at least one assigned account to supervise. They are associated with
a job title, the number of hours worked weekly, and salary.

Slides by Immanuel Trummer, Cornell University

ER Diagram

Account

Customer

OwnsAName

Password

Timestamp

Cid

CName Address

StreetN

StreetNr

Country

Has

Employee

Has

EmpID

Name

Superv.

Job

Hours Salary

AID

Slides by Immanuel Trummer, Cornell University

Translate into
Schema!

Slides by Immanuel Trummer, Cornell University

DB Schema - First Draft

• CustomerWaccount(Cid,CName,Aname, 
 Timestamp,Password)

• Employee(EmpID,Name,Job,Hours,Salary,AID)

• Supervises(EmpID,Cid)

• Address(AID,StreetN,StreetNr,Country)

• CustomerHasAddress(Cid,AID)

Slides by Immanuel Trummer, Cornell University

Bring to BCNF

Slides by Immanuel Trummer, Cornell University

Normalized Schema
• Functional dependencies:

• Key and trivial constraints (allowed by BCNF)

• Job, Hours → Salary (needs to be resolved!)

• Decompose Employee table:

• From Employee(EmpID,Name,Job,Hours,Salary,AID)

• Into Employee(EmpID,Name,Job,Hours,AID),
JobHoursToSalary(Job,Hours,Salary)

