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Outlook:  
Beyond Relational Data

• Graph data 

• Data streams


• Spatial data
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Reading List

• "Pregel: a system for large-scale graph processing", 
SIGMOD 2010, G. Malewicz et al. [Google]


• "One trillion edges: graph processing at Facebook-scale", 
VLDB 2015, A. Ching et al. [Facebook]
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Motivation: Large Graphs

• Graphs may exceed resource limits of single machines


• Graphs representing the entire Web (Google)


• Graphs representing large social networks (FB)


• ...


• This motivates graph processing in clusters
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Example: PageRank

• Google ranks search results via the PageRank algorithm


• Operates on a graph representation of the Web


• Nodes represent Web sites


• Edges represent links


• Pages with higher PageRank are preferable
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Random Surfer
• PageRank is based on the random surfer model


• Random surfer starts from random Web site


• Randomly selects outgoing links to follow


• May select random page with probability 𝛂


• Selects random page if no outgoing links


• PageRank: probability to visit site at specific instant
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PageRank Example

38.4 34.33.3

3.9

8.1

3.9

1.6

1.6

1.6 1.6

1.6



Slides by Immanuel Trummer, Cornell University

PageRank Example
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Calculating PageRank

• We can calculate PageRank via an iterative algorithm


• We initialize each node's PageRank to 1/NrNodes


• In each iteration, we redistribute PageRank over links


• Each node partitions PageRank among outgoing links


• PageRank in next iteration is sum over incoming links
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PageRank Iterative Updates
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Pregel Overview

• Pregel is a system for distributed graph processing


• Proposed in 2010 (Google), PageRank is use case


• Pregel distributes graph partitions over cluster nodes


• Worker nodes process their partition in parallel
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Pregel Computation Model

• Computation is divided into iterations ("supersteps")


• In each iteration, we invoke Compute for each node


• Compute function can be customized by user


• Input: messages sent to this vertex in prior iteration


• Can message other nodes, delivered in next iteration


• Computation ends once all nodes vote to halt
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Illustration of Computation
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Illustration of Computation
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Parallel Processing
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Parallel Processing
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Parallel Processing
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Parallel Processing
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Fault Tolerance
• Workers persist input and state at iteration start


• Coordinator detects worker failures via pings


• Recovery may start several supersteps earlier


• Re-partition graph to replace failed workers


• "Confined recovery" restricted to failed partitions


• Requires persisting outgoing messages as well
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PageRank in Pregel

Compute(ReceivedPR : int[]):


   NewPR = sum(ReceivedPR)


   For o in OutgoingLinks:


      Send(o.target, NewPR/|OutgoingLinks|)


    

(Extensions required for random jumps and handling "dead ends")
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Better Performance  
with Combiners

• Basic version sends lots of page rank values


• Can aggregate messages via custom "Combiners"


• Here: can combine page rank for same target as sum


