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Reading List

• "STREAM: the Stanford data stream management 
system", 2003, Arasu et al.


• "Streams and tables: two sides of the same coin",  
2016, Sax et al.


• ksqlDB Web site: https://ksqldb.io/


• "LSM-based storage techniques: a survey",  
2019, Luo et Carey. 

https://ksqldb.io/
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Data Streams
• Data is constantly being generated!


• Stock market ticker


• Network monitoring


• Sensors ...


• May need to react to specific patterns in real time!


• Fraud detection, medical intervention, stock sales, ...
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Traditional Data Ingestion

Data Warehouse

Extract 
Transform 

Load

Data  
Sources

Analyze  
via Queries
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Traditional Data Ingestion

Data Warehouse

Extract 
Transform 

Load

Data  
Sources

Invoked Regularly  
(e.g., nightly)

Unsuitable for Reacting in Real Time!

Analyze  
via Queries
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Stream Data Requirements

• Traditional ETL supports queries on static snapshots


• Delay between snapshots is often too high


• Streams keep generating new data with high frequency


• Query results keep changing (for query on stream)


• Hence, it is useful to keep queries running
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Stream Data Management

Database 
Management

Stream Data 
Management

Data Static Dynamic

Queries Dynamic Static
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Data Stream Topics

• STREAM System (~2003)


• First "Stream Data Management System"


• ksqlDB (~2020)


• Recent system for distributed stream processing
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Data Types

Database 
Management System

Data Stream 
Management System

Relation R: static  
(until changed explicitly)

Relation R(t):  
varies over time

Stream S: 
timestamped tuples
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Classes of Operators

Relation Stream
Relation to Stream

Stream to Relation

Relation  
to Relation
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Classes of Operators

Relation Stream
Relation to Stream

Stream to Relation

Relation  
to Relation
(SQL ✔) S to S? First S to R, then R to S.
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Stream to Relation
• Relation R(t) is specified as a window over stream S


• Tuple-based sliding window: S [Rows N]


• R(t) contains N tuples from S with highest timestamps


• Time-based sliding window: S [Range T]


• R(t) contains tuples from S starting from Now() - T


• Partitioned sliding window: S [Partition by A1, A2, ... Rows N]


• Separate windows for each value combination in A1, ...
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Relation to Stream

• Istream(R): R's inserted tuples with insertion timestamp


• Dstream(R): R's deleted tuples with deletion timestamp


• Rstream(R): R's current content with current timestamp
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Example Queries
• SELECT Avg(price) FROM StockPriceStream [Rows 10] 

WHERE stock = 'AAPL'


• SELECT * FROM Customers C 
  JOIN Orders [Range 2 Minutes] O  
  ON (C.customerKey = O.customerKey)


• SELECT Istream() FROM ( 
  SELECT * FROM Clicks[Range 30 Seconds] C  
  JOIN Advertisers A ON (C.advKey = A.advKey) 
)

What is the semantics of those queries?
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Query Processing

• Input query is compiled into continuous query plan


• Query plan is composed from standard operators


• Operators exchange tuple additions and deletions


• Streams produce only tuple additions


• Relations produce additions and deletions
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Operators

OperatorInput  
Queue(s)

Output  
Queue
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Operators
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Timestamp Order!
Timestamp Order!
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Operators

OperatorInput  
Queue(s)

Output  
Queue

Timestamp Order!
Timestamp Order!

Enough for simple operators (e.g., filtering)
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Operators

OperatorInput  
Queue(s)

Output  
Queue

Query Synopsis 
(Optional)

Others may store additional state in synopsis 
(e.g., hash table for join operators)

Timestamp Order!
Timestamp Order!
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Join Operator

Operator

Input 1

Input 2

Output

Hash  
Table 

for 
Input  

1

Hash  
Table 

for 
Input  

2
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Join Algorithm

• Tuple addition/deletion in Input 1 Queue


• Extract join key from added tuple


• Probe hash table of Input 2 with key


• Add/delete resulting join tuples to output


• Update synopsis (hash table for Input 1)
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Example Query Plan

Query: SELECT * FROM S1 [Rows 1,000], S2 [Range 2 Minutes]  
WHERE S1.A = S2.A and S1.A > 10

Row Window

S1

Time Window

Join

Filter on S1

S2
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Example Query Plan

Query: SELECT * FROM S1 [Rows 1,000], S2 [Range 2 Minutes]  
WHERE S1.A = S2.A and S1.A > 10

Row Window

S1

Time Window

Join

Filter on S1

S2

Can We Optimize This?
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Adaptive Query Planning

Executor Profiler Re-
Optimizer

Statistics

Request Statistics

Join Order 
Caching 

Constraints
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Adaptive Query Planning

Executor Profiler Re-
Optimizer

Statistics

Request Statistics

Join Order 
Caching 

Constraints

Can Combine
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Minimizing Space 
Requirements

• Very important for streams (unbounded size)


• Eliminate redundant data via synopsis sharing


• Exploit constraints to prune unnecessary data


• Shrink intermediate results via optimized scheduling
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Synopsis Sharing

• Synopses of operators in same plan often overlap


• Storing synopses separately means redundancy


• Instead: global synopses with operator-specific views


• Can extend to merge synopses from different plans
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Constraint Examples

• SELECT * FROM Orders [Rows Unbounded] O  
  JOIN Fullfillment [Rows Unbounded] F  
  ON (O.orderID = F.orderID)


• Requires unbounded synopses without constraints


• C1: Orders arrive before fullfillments - what changes?


• C2: Fullfillments clustered by orderID - what changes?
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Constraint Types
• Referential integrity k-constraint


• Refers to key-foreign key joins


• Delay at most k between matching tuples arriving


• Ordered-arrival k-constraint


• Stream elements at least k tuples apart are sorted


• Clustered-arrival k-constraint


• Elements with same key can be at most k tuples apart

Can exploit each constraint for dropping tuples in certain scenarios
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Scheduling Policies
• We have flexibility to decide when to invoke operators


• Scheduling policy may influence queue sizes


• FIFO: fully process tuple batches in the order of arrival


• Greedy: invoke operator discarding most tuples


• Mix: combine operators into chains


• FIFO scheduling within chain, greedy across chains
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Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO

Greedy

Selectivity: 20%
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Scheduling Example
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Scheduling Example
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Scheduling Example

Operator 1

Input

Operator 2
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Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy 1 1.2 1.4 1.6

Selectivity: 20%
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Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy 1 1.2 1.4 1.6 1.8 2 2.2

Selectivity: 20%



Slides by Immanuel Trummer, Cornell University

Approximation
• Load shedding: drop tuples to save overheads


• Can approximate aggregates based on samples


• Try to balance impact over all aggregates


• Reducing synopses sizes: save memory


• Often reduces output size of following operators


• Are there any exceptions ... ?
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Data Stream Topics

• STREAM System (~2003)


• First "Stream Data Management System"


• ksqlDB (~2020) 

• Recent system for distributed stream processing
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Apache Kafka  
Cluster

ksqlDB Architecture

ksqlDB Server
Engine

Interface
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Apache Kafka Overview

• A Java-based, distributed stream processing engine


• Producers can add records to different topics


• Consumers can subscribe to specific topics


• Kafka Streams API offers filter/grouping/... operators


• E.g., used by Uber for passenger-driver matching
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Kafka Topics
• Each topic corresponds to a log of ordered records


• Each record is a key-value pair


• Producers append to this log - no updates/deletes!


• Consumers receive updates for topics they subscribed to


• Regular topic: delete tuples by space/time constraint


• Compacted topic: new tuples override old keys
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Distributed Processing
• Each topic is divided into partitions


• Partitions are replicated across servers


• Fault tolerance by redundancy


• Allows to scale to more consumers


• Each partition has one dedicated leader


• Leader accepts topics updates


• Synchronizes with other replicas
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Distributed Processing

Server 1 Server 2 Server n
Topic 1 

Partition 1

Topic 1 
Partition 2

Topic 2 
Partition 1

Topic 1 
Partition 1

Topic 1 
Partition 2

Topic 2 
Partition 1

Topic 1 
Partition 1

Topic 1 
Partition 2

Topic 2 
Partition 1

Leader

Leader

Leader

Forward Changes



Slides by Immanuel Trummer, Cornell University

Coping with Insertions

• Need to handle insertions with a very high frequency


• Kafka Streams uses RocksDB as underlying engine


• Highly optimized for writes, good read performance


• Key idea: sequential (instead of random) access
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Optimize for Insertions

Memory

Disk

PagePagePagePage

Buffer
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Optimize for Insertions
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Optimize for Insertions

Memory

Disk

PagePagePagePage

Buffer

Page Page

Sequential Writes for Fast Insertions!

Need to Read Everything to Find Specific Key!
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Optimize for Reads

• Typically use index structure to speed up reads


• E.g., B+ tree seen previously in class


• But then insertions require random data access


• Leads to slow insertions - not acceptable for streams!
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Read vs. Write Performance

Write Performance

R
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Pe

rf
or

m
an

ce

Append

Index



Slides by Immanuel Trummer, Cornell University

Read vs. Write Performance

Write Performance

R
ea

d 
Pe

rf
or

m
an

ce

Append

Index

LSM



Slides by Immanuel Trummer, Cornell University

Log Structured Merge Tree  
(with Leveling Merge Policy)
• Maintains multiple levels containing sorted/indexed data


• Upper level(s) are stored in main memory


• Lower levels are stored on hard disk


• Constant size ratio between consecutive levels


• Data from one level is merged into next at overflow


• Merge operations need only sequential writes
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Reading LSM Trees
• May have to check every level to find data


• Checking each level is fast as data is sorted/indexed


• Bloom filters reduce the number of levels to consider


• (We have seen Bloom filters for distributed joins!)


• Bloom filter captures non-empty hash buckets


• Used to summarize keys present at each level
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Reading Cost Comparison

Approach Asymptotic Reading 
Cost

Append-Only O(All Entries)

Index 1 * Lookup Cost

LSM Nr. levels *  
Lookup Cost

(Pessimistic)
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Apache Kafka  
Cluster

ksqlDB Architecture

ksqlDB Server
Engine

Interface
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ksqlDB
• High-level API on top of Kafka Streams


• Translates SQL-like queries to Kafka operators


• Some similarities to STREAM query language


• Processes collections of events: streams and tables


• Pull queries execute once on current state


• Push query results get continuously updated
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ksqlDB Collection Types

Stream Table

Insertion  
semantics

New entries are 
appended

New entries override 
prior entries with 

same key

Purpose Represent historical 
information

Represent the 
current state
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Creating Collections

• CREATE STREAM priceHistory(symbol varchar, price int) 
WITH (kafka_topic = 'tickerTopic', value_format = 'JSON')


• CREATE TABLE curStockPrice( 
  symbol varchar PRIMARY KEY, price int)  
WITH (kafka_topic = 'tickerTopic', value_format = 'JSON')
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Creating Collections

• CREATE STREAM priceHistory(symbol varchar, price int) 
WITH (kafka_topic = 'tickerTopic', value_format = 'JSON')


• CREATE TABLE curStockPrice( 
  symbol varchar PRIMARY KEY, price int)  
WITH (kafka_topic = 'tickerTopic', value_format = 'JSON')

Need to associated with Kafka topic!
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Deriving Collections

• CREATE STREAM appleTicker AS  
SELECT * FROM priceHistory WHERE symbol = 'AAPL'


• CREATE STREAM advertisementStream AS 
  SELECT * FROM clickStream C JOIN advertiserTable A  
    ON C.advertiserID = A.advertiserID
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Inserting Data

• INSERT  
  INTO temperatureStream (Location, temperature)  
  VALUES ('Ithaca', 32)
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Query Types

Push Query Pull Query

Data Sources Table, Stream Table

Specific 
Restrictions -

Non-windowed 
aggregation: lookup 

by key

Life Time Keeps returning 
updates Returns one result
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Query Examples

• Pull Query: 
SELECT * FROM pageviewsByRegionTable  
  WHERE region = 'Ithaca'


• Push Query: 
SELECT * FROM clickEventStream  
  WHERE region = 'Ithaca'  
  EMIT Changes
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(Demo)
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Streams Summary

• Systems that analyze data streams in real time


• Motivates extensions to the SQL query language


• Need to keep memory consumption low


• May use specialized data structures for fast inserts


• Distributed stream processing required to scale


