
Data Streams
Immanuel Trummer 
itrummer@cornell.edu

www.itrummer.org

Slides by Immanuel Trummer, Cornell University

Outlook:  
Beyond Relational Data

• Graph data

• Data streams

• Spatial data

Slides by Immanuel Trummer, Cornell University

Outlook:  
Beyond Relational Data

• Graph data

• Data streams

• Spatial data

Slides by Immanuel Trummer, Cornell University

Reading List

• "STREAM: the Stanford data stream management
system", 2003, Arasu et al.

• "Streams and tables: two sides of the same coin",  
2016, Sax et al.

• ksqlDB Web site: https://ksqldb.io/

• "LSM-based storage techniques: a survey",  
2019, Luo et Carey.

https://ksqldb.io/

Slides by Immanuel Trummer, Cornell University

Data Streams
• Data is constantly being generated!

• Stock market ticker

• Network monitoring

• Sensors ...

• May need to react to specific patterns in real time!

• Fraud detection, medical intervention, stock sales, ...

Slides by Immanuel Trummer, Cornell University

Traditional Data Ingestion

Data Warehouse

Extract 
Transform 

Load

Data  
Sources

Analyze  
via Queries

Slides by Immanuel Trummer, Cornell University

Traditional Data Ingestion

Data Warehouse

Extract 
Transform 

Load

Data  
Sources

Invoked Regularly
(e.g., nightly) Analyze  

via Queries

Slides by Immanuel Trummer, Cornell University

Traditional Data Ingestion

Data Warehouse

Extract 
Transform 

Load

Data  
Sources

Invoked Regularly
(e.g., nightly)

Unsuitable for Reacting in Real Time!

Analyze  
via Queries

Slides by Immanuel Trummer, Cornell University

Stream Data Requirements

• Traditional ETL supports queries on static snapshots

• Delay between snapshots is often too high

• Streams keep generating new data with high frequency

• Query results keep changing (for query on stream)

• Hence, it is useful to keep queries running

Slides by Immanuel Trummer, Cornell University

Stream Data Management

Database
Management

Stream Data
Management

Data Static Dynamic

Queries Dynamic Static

Slides by Immanuel Trummer, Cornell University

Data Stream Topics

• STREAM System (~2003)

• First "Stream Data Management System"

• ksqlDB (~2020)

• Recent system for distributed stream processing

Slides by Immanuel Trummer, Cornell University

Data Stream Topics

• STREAM System (~2003)

• First "Stream Data Management System"

• ksqlDB (~2020)

• Recent system for distributed stream processing

Slides by Immanuel Trummer, Cornell University

Data Types

Database
Management System

Data Stream
Management System

Relation R: static  
(until changed explicitly)

Relation R(t):  
varies over time

Stream S: 
timestamped tuples

Slides by Immanuel Trummer, Cornell University

Classes of Operators

Relation Stream
Relation to Stream

Stream to Relation

Relation  
to Relation

Slides by Immanuel Trummer, Cornell University

Classes of Operators

Relation Stream
Relation to Stream

Stream to Relation

Relation  
to Relation
(SQL ✔)

Slides by Immanuel Trummer, Cornell University

Classes of Operators

Relation Stream
Relation to Stream

Stream to Relation

Relation  
to Relation
(SQL ✔) S to S? First S to R, then R to S.

Slides by Immanuel Trummer, Cornell University

Stream to Relation
• Relation R(t) is specified as a window over stream S

• Tuple-based sliding window: S [Rows N]

• R(t) contains N tuples from S with highest timestamps

• Time-based sliding window: S [Range T]

• R(t) contains tuples from S starting from Now() - T

• Partitioned sliding window: S [Partition by A1, A2, ... Rows N]

• Separate windows for each value combination in A1, ...

Slides by Immanuel Trummer, Cornell University

Relation to Stream

• Istream(R): R's inserted tuples with insertion timestamp

• Dstream(R): R's deleted tuples with deletion timestamp

• Rstream(R): R's current content with current timestamp

Slides by Immanuel Trummer, Cornell University

Example Queries
• SELECT Avg(price) FROM StockPriceStream [Rows 10] 

WHERE stock = 'AAPL'

• SELECT * FROM Customers C 
 JOIN Orders [Range 2 Minutes] O  
 ON (C.customerKey = O.customerKey)

• SELECT Istream() FROM ( 
 SELECT * FROM Clicks[Range 30 Seconds] C  
 JOIN Advertisers A ON (C.advKey = A.advKey) 
)

What is the semantics of those queries?

Slides by Immanuel Trummer, Cornell University

Query Processing

• Input query is compiled into continuous query plan

• Query plan is composed from standard operators

• Operators exchange tuple additions and deletions

• Streams produce only tuple additions

• Relations produce additions and deletions

Slides by Immanuel Trummer, Cornell University

Operators

OperatorInput  
Queue(s)

Output  
Queue

Slides by Immanuel Trummer, Cornell University

Operators

OperatorInput  
Queue(s)

Output  
Queue

Timestamp Order!
Timestamp Order!

Slides by Immanuel Trummer, Cornell University

Operators

OperatorInput  
Queue(s)

Output  
Queue

Timestamp Order!
Timestamp Order!

Enough for simple operators (e.g., filtering)

Slides by Immanuel Trummer, Cornell University

Operators

OperatorInput  
Queue(s)

Output  
Queue

Query Synopsis 
(Optional)

Others may store additional state in synopsis 
(e.g., hash table for join operators)

Timestamp Order!
Timestamp Order!

Slides by Immanuel Trummer, Cornell University

Join Operator

Operator

Input 1

Input 2

Output

Hash  
Table 

for 
Input  

1

Hash  
Table 

for 
Input  

2

Slides by Immanuel Trummer, Cornell University

Join Algorithm

• Tuple addition/deletion in Input 1 Queue

• Extract join key from added tuple

• Probe hash table of Input 2 with key

• Add/delete resulting join tuples to output

• Update synopsis (hash table for Input 1)

Slides by Immanuel Trummer, Cornell University

Example Query Plan

Query: SELECT * FROM S1 [Rows 1,000], S2 [Range 2 Minutes]  
WHERE S1.A = S2.A and S1.A > 10

Row Window

S1

Time Window

Join

Filter on S1

S2

Slides by Immanuel Trummer, Cornell University

Example Query Plan

Query: SELECT * FROM S1 [Rows 1,000], S2 [Range 2 Minutes]  
WHERE S1.A = S2.A and S1.A > 10

Row Window

S1

Time Window

Join

Filter on S1

S2

Can We Optimize This?

Slides by Immanuel Trummer, Cornell University

Adaptive Query Planning

Executor Profiler Re-
Optimizer

Statistics

Request Statistics

Join Order 
Caching 

Constraints

Slides by Immanuel Trummer, Cornell University

Adaptive Query Planning

Executor Profiler Re-
Optimizer

Statistics

Request Statistics

Join Order 
Caching 

Constraints

Can Combine

Slides by Immanuel Trummer, Cornell University

Minimizing Space
Requirements

• Very important for streams (unbounded size)

• Eliminate redundant data via synopsis sharing

• Exploit constraints to prune unnecessary data

• Shrink intermediate results via optimized scheduling

Slides by Immanuel Trummer, Cornell University

Synopsis Sharing

• Synopses of operators in same plan often overlap

• Storing synopses separately means redundancy

• Instead: global synopses with operator-specific views

• Can extend to merge synopses from different plans

Slides by Immanuel Trummer, Cornell University

Constraint Examples

• SELECT * FROM Orders [Rows Unbounded] O  
 JOIN Fullfillment [Rows Unbounded] F  
 ON (O.orderID = F.orderID)

• Requires unbounded synopses without constraints

• C1: Orders arrive before fullfillments - what changes?

• C2: Fullfillments clustered by orderID - what changes?

Slides by Immanuel Trummer, Cornell University

Constraint Types
• Referential integrity k-constraint

• Refers to key-foreign key joins

• Delay at most k between matching tuples arriving

• Ordered-arrival k-constraint

• Stream elements at least k tuples apart are sorted

• Clustered-arrival k-constraint

• Elements with same key can be at most k tuples apart

Can exploit each constraint for dropping tuples in certain scenarios

Slides by Immanuel Trummer, Cornell University

Scheduling Policies
• We have flexibility to decide when to invoke operators

• Scheduling policy may influence queue sizes

• FIFO: fully process tuple batches in the order of arrival

• Greedy: invoke operator discarding most tuples

• Mix: combine operators into chains

• FIFO scheduling within chain, greedy across chains

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO

Greedy

Selectivity: 20%

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO

Greedy

Selectivity: 20%

0
0

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1

Greedy

Selectivity: 20%

1
0

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2

Greedy

Selectivity: 20%

1
0.2

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2

Greedy

Selectivity: 20%

1
0.2

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2

Greedy

Selectivity: 20%

2
0

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2

Greedy

Selectivity: 20%

2
0

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2

Greedy

Selectivity: 20%

2
0

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2

Greedy

Selectivity: 20%

2
0.2

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2

Greedy

Selectivity: 20%

2
0.2

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2

Greedy

Selectivity: 20%

2
0.2

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3

Greedy

Selectivity: 20%

3
0

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3

Greedy

Selectivity: 20%

3
0

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy

Selectivity: 20%

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy 1

Selectivity: 20%

1
0

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy 1

Selectivity: 20%

1
0

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy 1 1.2

Selectivity: 20%

1
0.2

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy 1 1.2

Selectivity: 20%

1
0.2

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy 1 1.2 1.4

Selectivity: 20%

1
0.4

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy 1 1.2 1.4

Selectivity: 20%

1
0.4

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy 1 1.2 1.4 1.6

Selectivity: 20%

1
0.6

Slides by Immanuel Trummer, Cornell University

Scheduling Example

Operator 1

Input

Operator 2

Output

Intermediate 
Result

Policy T=0 T=1 T=2 T=3 T=4 T=5 T=6

FIFO 1 1.2 2 2.2 3 3.2 4

Greedy 1 1.2 1.4 1.6 1.8 2 2.2

Selectivity: 20%

Slides by Immanuel Trummer, Cornell University

Approximation
• Load shedding: drop tuples to save overheads

• Can approximate aggregates based on samples

• Try to balance impact over all aggregates

• Reducing synopses sizes: save memory

• Often reduces output size of following operators

• Are there any exceptions ... ?

Slides by Immanuel Trummer, Cornell University

Data Stream Topics

• STREAM System (~2003)

• First "Stream Data Management System"

• ksqlDB (~2020)

• Recent system for distributed stream processing

Slides by Immanuel Trummer, Cornell University

Apache Kafka  
Cluster

ksqlDB Architecture

ksqlDB Server
Engine

Interface

Slides by Immanuel Trummer, Cornell University

Apache Kafka  
Cluster

ksqlDB Architecture

ksqlDB Server
Engine

Interface

Slides by Immanuel Trummer, Cornell University

Apache Kafka Overview

• A Java-based, distributed stream processing engine

• Producers can add records to different topics

• Consumers can subscribe to specific topics

• Kafka Streams API offers filter/grouping/... operators

• E.g., used by Uber for passenger-driver matching

Slides by Immanuel Trummer, Cornell University

Kafka Topics
• Each topic corresponds to a log of ordered records

• Each record is a key-value pair

• Producers append to this log - no updates/deletes!

• Consumers receive updates for topics they subscribed to

• Regular topic: delete tuples by space/time constraint

• Compacted topic: new tuples override old keys

Slides by Immanuel Trummer, Cornell University

Distributed Processing
• Each topic is divided into partitions

• Partitions are replicated across servers

• Fault tolerance by redundancy

• Allows to scale to more consumers

• Each partition has one dedicated leader

• Leader accepts topics updates

• Synchronizes with other replicas

Slides by Immanuel Trummer, Cornell University

Distributed Processing

Server 1 Server 2 Server n
Topic 1

Partition 1

Topic 1
Partition 2

Topic 2
Partition 1

Topic 1
Partition 1

Topic 1
Partition 2

Topic 2
Partition 1

Topic 1
Partition 1

Topic 1
Partition 2

Topic 2
Partition 1

Leader

Leader

Leader

Forward Changes

Slides by Immanuel Trummer, Cornell University

Coping with Insertions

• Need to handle insertions with a very high frequency

• Kafka Streams uses RocksDB as underlying engine

• Highly optimized for writes, good read performance

• Key idea: sequential (instead of random) access

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Buffer

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Record
Buffer

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Record
Record

Buffer

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Record
Record
Record

Buffer

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Buffer

Page

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Buffer

Page

Record

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Buffer

Page

Record
Record

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Buffer

Page

Record
Record
Record

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Buffer

Page Page

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Buffer

Page Page

Sequential Writes for Fast Insertions!

Slides by Immanuel Trummer, Cornell University

Optimize for Insertions

Memory

Disk

PagePagePagePage

Buffer

Page Page

Sequential Writes for Fast Insertions!

Need to Read Everything to Find Specific Key!

Slides by Immanuel Trummer, Cornell University

Optimize for Reads

• Typically use index structure to speed up reads

• E.g., B+ tree seen previously in class

• But then insertions require random data access

• Leads to slow insertions - not acceptable for streams!

Slides by Immanuel Trummer, Cornell University

Read vs. Write Performance

Write Performance

R
ea

d
Pe

rf
or

m
an

ce

Append

Index

Slides by Immanuel Trummer, Cornell University

Read vs. Write Performance

Write Performance

R
ea

d
Pe

rf
or

m
an

ce

Append

Index

LSM

Slides by Immanuel Trummer, Cornell University

Log Structured Merge Tree  
(with Leveling Merge Policy)
• Maintains multiple levels containing sorted/indexed data

• Upper level(s) are stored in main memory

• Lower levels are stored on hard disk

• Constant size ratio between consecutive levels

• Data from one level is merged into next at overflow

• Merge operations need only sequential writes

Slides by Immanuel Trummer, Cornell University

Reading LSM Trees
• May have to check every level to find data

• Checking each level is fast as data is sorted/indexed

• Bloom filters reduce the number of levels to consider

• (We have seen Bloom filters for distributed joins!)

• Bloom filter captures non-empty hash buckets

• Used to summarize keys present at each level

Slides by Immanuel Trummer, Cornell University

Reading Cost Comparison

Approach Asymptotic Reading
Cost

Append-Only O(All Entries)

Index 1 * Lookup Cost

LSM Nr. levels *  
Lookup Cost

(Pessimistic)

Slides by Immanuel Trummer, Cornell University

Apache Kafka  
Cluster

ksqlDB Architecture

ksqlDB Server
Engine

Interface

Slides by Immanuel Trummer, Cornell University

ksqlDB
• High-level API on top of Kafka Streams

• Translates SQL-like queries to Kafka operators

• Some similarities to STREAM query language

• Processes collections of events: streams and tables

• Pull queries execute once on current state

• Push query results get continuously updated

Slides by Immanuel Trummer, Cornell University

ksqlDB Collection Types

Stream Table

Insertion  
semantics

New entries are
appended

New entries override
prior entries with

same key

Purpose Represent historical
information

Represent the
current state

Slides by Immanuel Trummer, Cornell University

Creating Collections

• CREATE STREAM priceHistory(symbol varchar, price int) 
WITH (kafka_topic = 'tickerTopic', value_format = 'JSON')

• CREATE TABLE curStockPrice( 
 symbol varchar PRIMARY KEY, price int)  
WITH (kafka_topic = 'tickerTopic', value_format = 'JSON')

Slides by Immanuel Trummer, Cornell University

Creating Collections

• CREATE STREAM priceHistory(symbol varchar, price int) 
WITH (kafka_topic = 'tickerTopic', value_format = 'JSON')

• CREATE TABLE curStockPrice( 
 symbol varchar PRIMARY KEY, price int)  
WITH (kafka_topic = 'tickerTopic', value_format = 'JSON')

Need to associated with Kafka topic!

Slides by Immanuel Trummer, Cornell University

Deriving Collections

• CREATE STREAM appleTicker AS  
SELECT * FROM priceHistory WHERE symbol = 'AAPL'

• CREATE STREAM advertisementStream AS 
 SELECT * FROM clickStream C JOIN advertiserTable A  
 ON C.advertiserID = A.advertiserID

Slides by Immanuel Trummer, Cornell University

Inserting Data

• INSERT  
 INTO temperatureStream (Location, temperature)  
 VALUES ('Ithaca', 32)

Slides by Immanuel Trummer, Cornell University

Query Types

Push Query Pull Query

Data Sources Table, Stream Table

Specific
Restrictions -

Non-windowed
aggregation: lookup

by key

Life Time Keeps returning
updates Returns one result

Slides by Immanuel Trummer, Cornell University

Query Examples

• Pull Query: 
SELECT * FROM pageviewsByRegionTable  
 WHERE region = 'Ithaca'

• Push Query: 
SELECT * FROM clickEventStream  
 WHERE region = 'Ithaca'  
 EMIT Changes

Slides by Immanuel Trummer, Cornell University

(Demo)

Slides by Immanuel Trummer, Cornell University

Streams Summary

• Systems that analyze data streams in real time

• Motivates extensions to the SQL query language

• Need to keep memory consumption low

• May use specialized data structures for fast inserts

• Distributed stream processing required to scale

