Spatial Data

Immanuel Trummer itrummer@cornell.edu www.itrummer.org

[RG, Sec. 28]

Outlook: Beyond Relational Data

- Graph data
- Data streams
- Spatial data

Outlook: Beyond Relational Data

- Graph data
- Data streams
- Spatial data

Source: Wikipedia

Types of Spatial Data

- Point data
 - Characterized completely by the location
- Region data
 - Defined by a boundary (e.g., line or surface)
 - May have anchor location (e.g., centroid)

Types of Spatial Queries

- **Spatial range** queries
 - E.g., show me restaurants in Ithaca
- Nearest neighbor queries
 - E.g., show me the nearest gas station
- Spatial joins
 - E.g., show hiking trails with parking within 100 m

Outlook: Indexing

- B+ trees for spatial data
- Space-filling curves
- Region quad tree
- Grid files
- The R tree

B+ Tree Index on (X, Y)

Problem with B+ Trees

- Close points (in 2D) not close in index
- Answering range queries etc. inefficient
- Could use one tree per dimension and merge RIDs
 - But leads to various overheads!

- Numbers each space coordinate
- Close points have close numbers
 - Not always, can avoid (Hilbert curves)
- **Binary** representation for each coordinate
 - E.g., **(a₁a₂...a_n, b₁b₂...b_n)** for 2D
- Z-Ordering assigns number a₁b₁a₂b₂...a_nb_n

Indexing with Z-Ordering

- Z-Ordering reduces multi-dimensional space to 1D
- Can use **standard index** (e.g., B+ tree) to index Z value
- E.g., translate XD range queries to 1D range queries
 - May still require some additional filtering

- Z-ordering enables us to store **points** efficiently
- Storing entire regions as set of points is inefficient
- Region quad trees divide space recursively
 - In 2D: each region is divided into four quadrants
 - Quadrants are associated with child nodes in tree

Grid Files

- Region quad trees partition independently of data
- This is not optimal if data is highly skewed
- Grid files adapt space partitioning to data
- More fine-grained representation for denser areas
- See **book** for more details

R Trees

- Adaption of **B+ tree** to handle spatial data
- Search key: multi-dimensional bounding box
- **Data entries**: (bounding box, rid)
 - Box is smallest box to contain object
- Index entries: (bounding box, pointer to child)

R Tree Illustration

R Trees: Lookups

- Compute **bounding box** for query object
 - Can be single point or region
- Start at root node of R tree
- Check children containing query object
 - May need to check multiple children

R Trees: Insertions

- Compute **bounding box** for inserted object
- Start at **root** node and proceed to leafs
- Select child needing minimal extension for object
- Insert object at leaf node
 - May have to enlarge bounding boxes on path to leaf
 - May have to **rebalance** the tree

R Tree Illustration

How to insert This Object?

