Spatial Data Immanuel Trummer itrummer@cornell.edu www.itrummer.org

[RG, Sec. 28]

Outlook: Beyond Relational Data

- Graph data
- Data streams
- Spatial data

Outlook: Beyond Relational Data

- Graph data
- Data streams
- Spatial data

Source: Wikipedia

Types of Spatial Data

- Point data
- Characterized completely by the location
- Region data
- Defined by a boundary (e.g., line or surface)
- May have anchor location (e.g., centroid)

Types of Spatial Queries

- Spatial range queries
- E.g., show me restaurants in Ithaca
- Nearest neighbor queries
- E.g., show me the nearest gas station
- Spatial joins
- E.g., show hiking trails with parking within 100 m

Outlook: Indexing

- B+ trees for spatial data
- Space-filling curves
- Region quad tree
- Grid files
- The R tree

B+ Trees for Spatial Data

B+ Trees for Spatial Data

B+ Trees for Spatial Data

Y B+ Tree Index on (X, Y)

B+ Trees for Spatial Data

Y
 B+ Tree Index on (X, Y)

B+ Trees for Spatial Data

Y
 B+ Tree Index on (X, Y)

Problem with B+ Trees

- Close points (in 2D) not close in index
- Answering range queries etc. inefficient
- Could use one tree per dimension and merge RIDs
- But leads to various overheads!

Z-Ordering

- Numbers each space coordinate
- Close points have close numbers
- Not always, can avoid (Hilbert curves)
- Binary representation for each coordinate
- E.g., $\left(a_{1} a_{2 \ldots} . . a_{n}, b_{1} b_{2 \ldots} . . b_{n}\right)$ for 2D
- Z-Ordering assigns number $a_{1} b_{1} a_{2} b_{2} . . . a_{n} b_{n}$

Z-Ordering

Indexing with Z-Ordering

- Z-Ordering reduces multi-dimensional space to 1D
- Can use standard index (e.g., B+ tree) to index Z value
- E.g., translate XD range queries to 1 D range queries
- May still require some additional filtering

Region Quad Tree

- Z-ordering enables us to store points efficiently
- Storing entire regions as set of points is inefficient
- Region quad trees divide space recursively
- In 2D: each region is divided into four quadrants
- Quadrants are associated with child nodes in tree

Region Quad Trees

Region Quad Trees

Region Quad Trees

Region Quad Trees

Grid Files

- Region quad trees partition independently of data
- This is not optimal if data is highly skewed
- Grid files adapt space partitioning to data
- More fine-grained representation for denser areas
- See book for more details

R Trees

- Adaption of B+ tree to handle spatial data
- Search key: multi-dimensional bounding box
- Data entries: (bounding box, rid)
- Box is smallest box to contain object
- Index entries: (bounding box, pointer to child)

R Tree Illustration

R Trees: Lookups

- Compute bounding box for query object
- Can be single point or region
- Start at root node of R tree
- Check children containing query object
- May need to check multiple children

R Trees: Insertions

- Compute bounding box for inserted object
- Start at root node and proceed to leafs
- Select child needing minimal extension for object
- Insert object at leaf node
- May have to enlarge bounding boxes on path to leaf
- May have to rebalance the tree

R Tree Illustration How to insert This Object?

