Querying Spatial Data
 Immanuel Trummer itrummer@cornell.edu www.itrummer.org

[RG, Sec. 28]

Outlook: Beyond Relational Data

- Graph data
- Data streams
- Spatial data

Outlook: Beyond Relational Data

- Graph data
- Data streams
- Spatial data

Reading Material

- ISO 19125-2:2004

Geographic information - Simple feature access Part 2: SQL Option
https://www.iso.org/standard/40115.html

Building Geography Values

- ST_GEOGPOINT(longitude, latitude) Builds new point with given coordinates
- ST_MAKELINE(Geo_1, Geo_2)

Connect two geography values by line

Calculating Boundaries

- ST_BOUNDARY(geography expression)
- Returns the union of boundaries of given objects
- Points have no boundaries
- The boundary of a line are the endpoints
- Polygons are bounded by lines

Calculating Centroids

- ST_CENTROID(geography expression)
- Returns the weighted average of component centroids
- Centroid of point coordinates is arithmetic mean
- Centroid of line segment is the middle point
- Centroid of a polygon is its center of mass

Access to Specific Properties

- ST_X(geography expression) Returns the longitude
- ST_Y(geography expression) Returns the latitude
- ST_DIMENSION(geography expression)

Returns dimension (of highest-dimensional element)

Predicates Expressions

- ST_CONTAINS(geo_1, geo_2) TRUE if geo_1 contains geo_2
- ST_DWITHIN(geo_1, geo_2, distance) TRUE if distance of at least one point from geo_1 and one point from geo_2 is below the distance (in meters)

Calculating Measurements

- ST_AREA(geography expression)

Calculates the covered area in square meters

- ST_MAXDISTANCE(geo_1, geo_2)

Longest distance between any two points in meters

(Demo)

Spatial Data Summary

- Various applications require spatial data
- Standard data structures are a bad match
- Saw specialized data structures like R trees
- SQL query languages requires extensions
- Saw extensions supported by BigQuery Geo Viz

